Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярный анализ по спектрам комбинационного рассеян и я света

    Это и заставляет нас в настоящее время положить в основу общего метода молекулярного спектрального анализа спектры комбинационного рассеяния света. [c.102]

    В качестве примера можно привести так называемый комбинированный метод анализа бензиновых фракций нефтей, разработанный под руководством академиков Г. С. Ландсберга и Б. А. Казанского на основе сочетания химических исследований и изучения спектров комбинационного рассеяния света [2]. Для создания новых спектральных методик идентификации веществ и для анализа сложных смесей органических соединений необходимы систематизированные данные по спектральным характеристикам индивидуальных соединений. Такие данные по ультрафиолетовым спектрам большого количества органических соединений в виде растворов в различных растворителях собраны в ряде изданий — атласов молекулярных спектров [3, 4]. Следует отметить, что подобных изданий, систематизирующих спектры кристаллов, пока нет, хотя работы в этой области успешно ведутся во многих лабораториях нашей страны и за рубежом. [c.6]


    Анализ по спектрам комбинационного рассеяния света, основанный на изучении явления рассеивания световых лучей этот метод дает возможность определять элементарный и молекулярный состав вещества. [c.262]

    Молекулярный спектральным анализ по спектрам комбинационного рассеяния света и излучению молекул [c.127]

    МОЛЕКУЛЯРНЫЙ АНАЛИЗ ПО СПЕКТРАМ КОМБИНАЦИОННОГО РАССЕЯНИЯ СВЕТА [c.285]

    Молекулярный анализ по спектрам комбинационного рассеяния света во многом аналогичен эмиссионному спектральному анализу, основанному на изучении спектров испускания атомов. В принципе он даже проще, так как сложный вопрос о влиянии условий возбуждения на интенсивности спектральных линий, составляющий одну из главных трудностей при проведении эмиссионного спектрального анализа, здесь не встает, ибо интенсивности линий комбинационного рассеяния определяются в первую очередь структурой рассеивающих молекул. Правда, на интенсивность линий влияют геометрические и светотехнические параметры установки. Однако условия опыта могут быть выбраны и стандартизированы так, чтобы эти влияния были исключены. Точно так же зависимость интенсивности спектральных линий от концентрации в спектрах комбинационного рассеяния, как правило, проще, чем в спектрах испускания при отсутствии значительных межмолекулярных взаимодействий интенсивность линий комбинационного рассеяния каждого компонента смеси I пропорциональна его концентрации С. /=/юоС, где /юо —интенсивность чистого (стопроцентного) вещества. Трудности анализа по спектрам комбинационного рассеяния связаны со слабой интенсивностью линий, которые часто маскируются сплощным фоном. Это значительно снижает точность и чувствительность этого метода анализа по сравнению с эмиссионным анализом. Основная же трудность состоит в огромном многообразии анализируемых соединений. Это многообразие, а также трудность и дороговизна синтеза и очистки больщинства индивидуальных веществ делают совершенно неперспективными методы анализа, в которых в качестве сравнения или для составления калибровочных смесей применяются индивидуальные вещества. Громадное большинство индивидуальных веществ, встречающихся в анализируемых смесях, доступны только весьма ограниченному числу наиболее крупных лабораторий, да и то в очень небольших количествах некоторые же из них вообще уникальны. Поэтому в высшей степени актуальна задача разработки методов анализа, основанных на использовании табличных данных, которые и получаются с помощью этих дорогостоящих и редких индивидуальных веществ. [c.299]


    МОЛЕКУЛЯРНЫЙ КАЧЕСТВЕННЫЙ И КОЛИЧЕСТВЕННЫЙ АНАЛИЗ ПО СПЕКТРАМ КОМБИНАЦИОННОГО РАССЕЯНИЯ СВЕТА [c.320]

    Анализ по спектрам комбинационного рассеяния света, основанный на явлении, открытом одновременно советскими физиками Г. С. Ландсбергом и Л. И. Мандельштамом и индийским физиком Ч. В. Раманом. Это явление, обусловливаемое молекулярной структурой исследуемого вещества, сопровождается изменением длины волны рассеиваемого данной средой света. [c.309]

    Общие свойства атомных и молекулярных спектров. Элементарная теория спектральных приборов и их деталей. Регистрация спектров измерение длин волн и интенсивностей. Техника спектроскопии и молекулярного анализа по поглощению в инфракрасной области, по спектрам комбинационного рассеяния света, по поглощению в видимой и ультрафиолетовой областях. [c.173]

    Качественные и количественные методы молекулярного спектрального анализа. Абсорбционный молекулярный анализ в инфракрасной и ультрафиолетовой частях спектра з. Молекулярный анализ по спектрам комбинационного рассеяния света. [c.25]

    Методы молекулярного анализа кремнийорганических соединений могут быть разделены на три группы абсорбционные методы анализа, анализ по спектрам комбинационного рассеяния света и анализ по спектрам масс. При исследовании кремнийорганических соединений применялись главным образом абсорбционные методы. В частности, наиболее изучены инфракрасные спектры поглощения. [c.87]

    В этой главе рассматривается не столько сам метод, сколько его применение к решению проблем химии нефти. Это относится к применению инфракрасной спектроскопии и спектров комбинационного рассеяния для изучения химического строения углеводородов и углеводородных смесей. Несмотря на то значение, которое имеет качественный и количественный анализы индивидуальных соединений, основное внимание уделяется характеристическим частотам, наблюдаемым в спектрах веществ с определенной молекулярной структурой. Оценивается возможность количественного определения содержания углеводородов данного типа или данных структурных групп. В главе обсуждаются лишь основные вопросы спектроскопии комбинационного рассеяния света и инфракрасной спектроскопии, а вопросы, относящиеся к рассмотрению природы колебательных спектров или интерпретации колебательных частот, рассматриваются лишь частично. [c.313]

    Спектральный анализ — физический метод качественного и количественного определения атомного и молекулярного состава вещества, основанный на исследовании его спектров [1—4]. Физическая основа спектрального анализа — спектроскопия атомов и молекул, его классифицируют по целям анализа и типам спектров [7, 8,10—13]. Атомный спектральный анализ определяет элементный состав образца по атомным (ионным) спектрам испускания и поглощения, молекулярный спектральный анализ — молекулярный состав вещества по молекулярным спектрам поглощения, люминесценции и комбинационного рассеяния света [1, 3, 4, 7]. [c.213]

    Подробно описаны методы спектрального анализа, получившие широкое практическое применение атомно-абсорбционного анализа и анализа по молекулярным спектрам комбинационного рассеяния. Включен материал о современных источниках света для атомно-эмиссионного анализа ВЧ-плазмотрон, оптический квантовый генератор и др. [c.3]

    Определение состава материалов, контроль их чистоты и соответствия заданным нормам — одна из важных задач производства. Издавна эти вопросы решались методами химического анализа. Они предполагают переведение пробы в раствор с последующим определением состава по химическим свойствам элементов и их соединений. Но развитие производства, реконструкция предприятий и прочее неизменно изменяет требования относительно быстроты выполнения и точности результатов контроля, изменения его характера или задач. Известные способы анализа часто оказываются недостаточными. Это сдерживает рост производительности труда или приводит к потере эффективности механизации и автоматизации процессов производства. Поэтому наряду с совершенствованием и развитием химических методов анализа развиваются и физико-химические электролиз, потенциометрия, полярография, хроматография и т. д. Среди них особенно широко применяют спектральный метод. Он основан на изучении спектров излучения или поглощения света атомами и молекулами материала исследуемой пробы и его используют для решения самых разнообразных задач. Появились даже смежные направления спектрометрии, общим для которых порой является лишь получение и изучение спектров (анализ эмиссионный и абсорбционный, атомный и молекулярный, люминесцентный и по спектрам комбинационного рассеяния, изотопный и т. д.). [c.3]


    Молекулярный спектральный анализ основан на использовании спектров излучения, поглощения, люминесценции и комбинационного рассеяния света веществом. В тех случаях, когда невозможно определить вид химического соединения, молекулярный спектральный анализ позволяет определить класс соединений, к которому принадлежит данное вещество.  [c.4]

    В большинстве случаев при исследовании спектров комбинационного рассеяния ограничиваются измерением только одного параметра — частот линий комбинационного рассеяния. Измерение частот сравнительно несложно и при некоторых мерах предосторожности дает достаточно точные и надежные результаты. Значительно более сложную задачу представляет собой измерение интенсивностей, знание которых необходимо для количественного молекулярного анализа. В большинстве работ по комбинационному рассеянию света интенсивности вообще не измерялись, а только оценивались грубо в условной шкале. Но даже [c.299]

    В основе количественного анализа углеводородных смесей лежат следующие положения 1) интенсивность линий комбинационного рассеяния данного компонента смеси пропорциональна числу молекул данного компонента в рассеивающем объеме 2) интенсивность не зависит от присутствия других компонентов. Первое положение вытекает из природы комбинационного рассеяния. Второе есть следствие того обстоятельства, что межмолекулярные взаимодействия обычно весьма слабо-влияют на внутримолекулярные колебания, проявляющиеся в линиях комбинационного рассеяния. Только в некоторых частных случаях меж-молекулярное взаимодействие существенно влияет на интенсивность линий комбинационного рассеяния. Это влияние весьма значительно, например, при взаимодействиях групп О—Н или М—Н с окружающими молекулами, содержащими кислород, азот или фтор, т. е. в случае образования так называемой водородной связи. Оно иногда бывает заметным при взаимодействиях молекул с большими дипольными моментами. Но для громадного большинства интересных с практической стороны веществ, в частности для углеводородов, межмолекулярные влияния пренебрежимо малы. Поэтому спектр рассеяния углеводородны.х молекул оказывается независимым от состава смесн и остается неизменным при переходе от газообразного состояния к жидкому. Это обстоятельство очень упрощает задачу молекулярного спектрального анализа по методу комбинационного рассеяния света. [c.328]

    Применение соответствующих источников света и кювет позволяет регистрировать вращательные и колебательные спектры комбинационного рассеяния не только фотографическим, но и фотоэлектрическими методами. Надежное измерение основных параметров линий комбинационного рассеяния — интенсивности, ширины и поляризации — открывает большие возможности не только для решения структурных задач, но и для качественного и количественного молекулярного анализа в газовой фазе. [c.348]

    Итак, мы имеем четыре возможности обнаружения собственных частот, характерных для молекулы. Две из них дают нам сведения об электронных спектрах молекулы — это спектры поглощения в коротковолновой области (ультрафиолетовой и видимой) и спектры люминесценции две другие — инфракрасные спектры поглощения и комбинационное рассеяние света — дают сведения о низкочастотных (инфракрасных) колебательных спектрах молекулы. Все они характерны для молекул и могут быть использованы для их идентификации и, следовательно, для молекулярного спектрального анализа. Однако эффективность этих методов, их практическая ценность, равно как и техническое оснащение, необходимое для их использования, разнятся чрезвычайно сильно. Рассмотрим их последовательно. [c.24]

    Наиболее совершенным при исследовании химического состава сырья следует считать комплексный метод, основанный на сочетании известных методов анализа (установление йодного числа, молекулярного веса, сульфирование, определение анилиновой точки) с разгонкой на колонках четкой ректификации и изучением спектров комбинационного рассеяния света узких фракций исходного продукта . В ИНХП АН Азерб. ССР исследовался химический состав исходного для полимеризации сырья путем комплексного использования хроматографической адсорбции, четкой ректификации, газожидкостной хроматографии и спектрального анализа. Сочетание этих способов дает качественное, а также в определенных случаях и количественное представление о составе исходного сырья и, следовательно, о целесообразности применения его для полимеризации. [c.43]

    Молекулярный анализ по спектрам комбинационного рассеяния света во многом аналогичен эмиссионному спектральному анализу, построенному на изучении спектров испускания атомов. В принципе он даже проще, так как сложный вопрос о влиянии условий возбуждения на интенсивности спектральных линий, представляющий одну из главных трудностей при проведении эмиссионного спектрального анализа, здесь стоит гораздо менее остро вследствие того, что интенсивности линий комбинационного рассеяния определяются в первую очередь структурой рассеивающих молекул. Правда, на интенсивность линий влияют геометрические и светотехнические параметры установки. Однако, как мы покажем ниже, условия опыта могут быть выбраны и стандартизованы таким образом, чтобы эти влияния были исключены. Точно так же зависимость интенсивности спектральных линий от концентрации в спектрах комбинационного рассеяния, как правило, проще, чем в спектрах испускания при отсутствии значительных межмолекулярных взаимодействий интенсивность линий комбинационного рассеяния каждого компонента смеси пропорциональна его концентрации. Трудности анализа по спектрам комбинационного рассеяния связаны со слабой интенсивностью линий, которые мас-1шруются часто сплошным фоном. Это приводит к тому, что точность и чувствительность данного метода анализа значительно меньше, чем в [c.11]

    Среди современных методов исследования строения органических соединений и их анализа значительную роль играют физические методы, в частности оптические. Особое значение среди этих последних приобретает метод рамап-спектросконии (комбинационное рассеяние света) становящийся в последние годы одним из очень важных приемов изучения молекул. Ряд структурных задач теоретической органической химии и многочисленные сложные задачи анализа смесей органических соедине-пый, включая технически важные вопросы анализа моторного Т01плива, могут успешно разрешаться при помощи метода комбинационного рассеяния света. Мы имеем в этом методе настоящий прием молекулярного спект-трального анализа как качественного, так и количественного. Значение его особенно возрастает в связи с тем обстоятельством, что возникновение спектра комбинационного рассеяния света связано с возбуждением лишь ротационных и низких (обычно первого) колебательных уровней и поэтому не сопровождается расщеплением даже весьма несто11ких молекул и радикалов. Таким образом, метод комбинационного рассеяния и в этом отношении не только не уступает, но даже превосходит обычные методы инфракрасной спектроскопии, не говоря уже об огромных преимуществах его в смысле относительной аппаратурной простоты, скорости получения результатов, повышения разрешающей снособности и т. д. [c.159]

    Оптические методы анализа основаны на измерении характе]5истик оптических свойств вещества (испускание, поглощение, рассеивание, отражение, преломление, дифракция, интерференция, поляризация света), проявляющихся при его взаимодействии с элекгромагнитшш излучением. По характеру взаимодействия электромагнитного излуч(шия с веществом оптические методы анализа обычно подразделяют на эмиссионный спектральный, атомно-абсорбционный, молекулярный абсорбционный спектральный (спектрофотометрия, фотоэлектроколориметрия), люминесцентный, нефелометрический, турбодиметрический, рефрактометрический, интерферометрическиг поляриметрический анализ, а также спектральный анализ на основе спектров комбинационного рассеяния (раман-эффект) и некоторые другие методы, также использующие взаимодействие электромагнитного поля с веществом — ядерный магнитный резонанс (ЯМР), электронный парамагнитный резонанс (ЭПР), ядерная гамма-резонансная спектроскопия (эффект Мессбауэра) и т. д. [c.516]

    В литературе имеются примеры анализов при совместном использовании газового хроматографа и диспергирующего спектрофотометра [41]. Спектры, показанные на рис. 4.14, получены от газохроматографической фракции нефти. Методом хроматомасс-спектрометрии была установлена молекулярная формула этой фракции — С,оН,4, которой отвечает структура либо индана, либо одного иэ изомеров метил-стирола. Даже если качество этого спектра не сравнимо с качеством спектра, полученного при более медленном сканировании и для образца большего объема, и то с уверенностью можно сказать, что эта фракция — л<-метилстирол. В других примерах, приведенных в указанной статье, для идентификации выделенных микрообразцов требуется применение таких дополнительных методов, как ЯМР и спектроскопия комбинационного рассеяния света. Поскольку эти ме-1оды требуют 0,1 — 1 мкл вещества, они наиболее ценны, когда в распоряжении имеется соответствующее количество образца. Кроме того, они позволяют быстро разделять и характеризовать компоненты, не прибегая к фракционной перегонке. [c.114]


Смотреть страницы где упоминается термин Молекулярный анализ по спектрам комбинационного рассеян и я света: [c.4]    [c.197]    [c.114]    [c.21]    [c.53]    [c.194]    [c.243]   
Смотреть главы в:

Методы спектрального анализа -> Молекулярный анализ по спектрам комбинационного рассеян и я света




ПОИСК





Смотрите так же термины и статьи:

Анализ молекулярный

Анализ по спектрам комбинационного

Анализ рассеяния света

Анализ спектров

Комбинационное рассеяние

Комбинационное рассеяние света

Рассеяние молекулярное

Рассеяние света

Рассеяние света молекулярное

Свет, комбинационное рассеяние

Спектр молекулярный

Спектр света

Спектры комбинационного рассеяния



© 2024 chem21.info Реклама на сайте