Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тиофен реакционная способность

    Тиофен, открытый Виктором Мейером в 1882 г., кипит при 84,1° и. плавится при 38,3° он термически устойчив вплоть до 850 . Оба атома водорода, расположенные по соседству с серой, обладают большой реакционной способностью они легко нитруются, галогенируются и меркурируются. При определенных условиях их можно даже алкили-ровать и ацетилировать. [c.506]

    Относительная реакционная способность тиофен > бензол [c.405]


    Распределение я-электронной плотности в молекуле пиррола также неравномерно. Эта плотность выше в а (а )-положении. Поэтому при реакции электрофильного замещения, которая у пиррола протекает значительно легче, чем у бензола, реагенты становятся в эти положения. По реакционной способности пиррол находится между фураном и тиофеном  [c.362]

    Нафталин и другие конденсированные циклические соединения в реакциях алкилирования по Фриделю—Крафтсу обычно дают плохие выходы продуктов, поскольку, будучи высоко реакционно способными, они взаимодействуют с катализатором. Гетероциклические соединения обычно тоже малопригодны как субстраты для этой реакции. И хотя алкилирование некоторых фуранов и тиофенов удалось осуществить, нет сообщений об истинном алкилировании пиридина или хино-лина [209]. Алкилирование пиридина и других азотсодержащих [c.350]

    Для пиррола, фурана и тиофена а-положение является более реакционноспособным, чем -положение. Величины + показывают, что по позиционной селективности эти гетероциклы можно расположить в ряд фуран > тиофен > пиррол. Следует отметить, что рассчитанные величины не могут в полной мер< служить основанием для вывода об относительной реакционной способности данных гетероциклов согласно экспериментальным [c.245]

    Расположите в порядке возрастания реакционной способности в условиях электрофильного замещения бензол, нафталин, тиофен, пиридин. Напишите реакции бромирования каждого соединения. Укажите условия их проведения. [c.211]

    Реакционная способность возрастает в ряду пиридин < бензол < нафталин < тиофен. [c.243]

    Обладая значительной реакционной способностью по отношению к электрофильным реагентам [92], тиофен легко ацилируется хлористым ацетилом в присутствии хлорного олова и уксусным ангидридом в присутствии хлорной кислоты или ее солей. Наиболее проста и удобна методика с применением магниевой соли хлорной кислоты (ангидрона) [93]. [c.30]

    Как и следовало ожидать, бензол реагирует с электрофильными агентами менее активно, чем тиофен. Вероятно, сравнительно низкая реакционная способность бензола частично объясняется его более высокой резонансной стабилизацией. Другим важным фактором является более высокая энергия переходного состояния промежуточного катиона, в котором положительный заряд сосредоточен только на атомах углерода. [c.209]

    Разница в скоростях реакции рассматриваемых циклических систем в значительной мере зависит от природы реагента. Например, в водной серной кислоте скорость протонирования тиофена в 10 раз выше скорости протонирования бензола, а при действии молекулярного брома в уксусной кислоте тиофен бромируется в 10 скорее, чем бензол. Следует проявлять особую осторожность при сравнении реакционной способности различных гетероциклов и никогда не пользоваться разными реакциями для таких сравнений. [c.209]


    Диазосочетание, Реакционная способность тиофена и алкил-тиофенов недостаточно высока, чтобы обеспечить прохождение реакции сочетания даже с самыми активными диазониевыми ионами. [c.251]

    Имидазол наиболее реакционноспособен из всех трех 1,3-азолов, так же как пиррол превосходит по реакционной способности фуран или тиофен. С другой стороны, обладая наиболее высокой основностью, он, по всей вероятности, реагирует в форме соли. [c.327]

    Реакционная способность тиофенов 235 [c.7]

    Реакционная способность тиофенов [c.235]

    Реакционная способность тиофенов характеризуется некоторыми общими чертами. [c.235]

    При электрофильном замещении тиофен значительно более реакционноспособен, чем бензол (для разных реакций — в 600— 100 000 раз, см. табл. 19.1.2), хотя большая часть реакций в обоих случаях протекает по одинаковому механизму. Бензол часто удобно использовать как растворитель. Реакционная способность при [c.235]

    Реакционная способность по отношению к радикалам у тиофенов лишь немного выше, чем у бензола например, в случае арильных радикалов она не более, чем в два раза выше реакционной способности бензола, а в случае алкильных радикалов — не более, чем в 9 раз. Для фенилирования а- и р-положений тиофена факторы парциальной скорости составляют соответственно 7,25 и 0,5. [c.258]

    ОБЩАЯ ХАРАКТЕРИСТИКА РЕАКЦИОННОЙ СПОСОБНОСТИ ПИРРОЛОВ, ТИОФЕНОВ И ФУРАНОВ [c.304]

    В этой главе рассмотрены общие принципы реакционной способности пятичленных гетероциклических соединений — пирролов, тиофенов и фуранов, а также приведен сравнительный анализ реакционной способности представителей этого класса гетероциклических соединений. [c.304]

    Общая характеристика реакционной способности пирролов, тиофенов и фуранов [c.305]

    Здесь параллели с бензольными аналогами продолжаются, и для перечисленных соединений нехарактерны какие-то особые свойства их реакционная способность такая же, как и у бензальдегидов, кетонов, кислот и их эфиров. Например, в противоположность легкости декарбоксилирования а-кислот пиррольного и фуранового ряда, тиофен-2-карбоновые кислоты с трудом теряют диоксид углерода, однако высокотемпературное декарбоксилирование имеет препаративное значение (см. также разд. 14.13.1.2) [128]. [c.366]

    Общая характеристика реакционной способности индолов, бензо[Ь]тиофенов и др. 409 [c.409]

    Электрофильное замещение в пирроле, фуране и тиофене. Реакционная способность и ориентация [c.1019]

    Исходя из этого, ориентацию при электрофильном замещении в тиофене нельзя обсуждать на основе я-электронных плотностей. Меландер [86], рассчитав энергии локализации, пришел к выводу, что в тиофене реакционная способность положения 3 должна быть близкой к реакционной способности бензола, в то время как положение 2 должно быть значительно более реакционноспособным. Это удовлетворительно согласуется с экспериментальными данными. [c.162]

    Экспериментально установлено, что сера с заметной скоростью реагирует с углеводородами с образованием тиолов, сульфидов и малых количеств тиофенов уже при 150—170°С [17, 536]. М. А. Бестужев [494] нашел, что реакционная способность углеводородов в этом процессе растет с повышением их молекулярной массы и степени ароматичности легче всего взаимодействуют с серой полициклоароматические труднее- моноциклоароматиче- [c.74]

    Положительным концом диполя являются гетероатомы, передающие для образования ароматической системы по одной паре р-электронов, а отрицательным — углеводородная часть гетероцикла. Поэтому ароматическое кольцо в этих соедине ниях имеет большую электронную плотность, чем бензол. По реакционной способности к бензолу наиболее близок тиофен в этом отношении его можно сравнивать с нафталином и ант раценом. По реакционной способности пиррол и фуран превос ходят даже фенол и анилин. [c.352]

    В гетероциклических системах различные положения тоже неэквивалентны и к ним применимы такие же правила ориентации, как и к другим циклическим системам. Замещение в фу-ране, тиофене и пирроле направляется главным образом в положение 2 и идет быстрее, чем в бензоле [64]. Пиррол особенно активен, его реакционная способность приближается к реакционной способности анилина и фенолят-иона. В случае пиридина [65] атака происходит не на само свободное основание, а на его сопряженную кислоту — ион пиридиния [66]. Положение 3 обладает наивысшей реакционной способностью, но общая активность пиридина значительно ниже, чем бензола, и аналогична нитробензолу. Однако в положение 4 пиридина можно вводить группы косвенным путем, проводя реакцию с соответствующим Н-оксидом пиридина [67]. [c.324]

    Следует более подробно рассмотреть дипольные моменты указанных гетероциклов, поскольку иногда допускают ошибку, принимая гетероатомы всех трех соединений за положительные концы диполей. Эта ошибка, по-видимому, вызвана тем впечатлением, что в системах с высокой реакционной способностью избыток отрицательного заряда должен быть сосредоточен на наиболее нуклеофильном атоме углерода. В действительности же отрицательные концы диполей как в фуране, так и в тиофене находятся на гетероатомах. [c.20]

    Предпринятое в последнее время изучение кинетики замещения по а- и р-положениям фурана и бензофурана, а также тиофена и бензотиофена показало, что влияние бензольного колыца проявляется в общем понижении реакционной способности гетероцикла. Особенно интересно то, что в бензофуране и бензотиофене реакционная способность Сг-атома снижена более или менее одинаково по сравнению с Сг-атомами фурана и тиофена, но в то же время реакционная способность Сз-атома как в бензофуране, так и в бензотиофене повышена по сравнению с р-углеродньгм атомом фурана и тиофена. Следовательно, способность бензотиофена реагировать преимущественно по третьему, а бензофурана по второму положениям отражает тот факт, что тиофен замещается по Сз-атому легче, чем фуран. Эти соотношения могут быть экстраполированы на пиррол и индол пиррол способен в небольшой степени замещаться по р-углеродному атому (например, нитрование идет по этому положению на 20%), тогда как индол замещается почти исключительно по положению 3. [c.324]


    С целью подтверждения этого проведены опыты с бромбензо-лом, анилином и тиофеном. Как показали опыты, анилин и бром-бензол не обнаружили заметной реакционной способности, а тио-фен оказался реакционноспособным как с КУ-1, так и с КУ-2. Последний, как и следовало ожидать, был активнее. [c.121]

    В течение длительного времени велись споры по поводу значения ( -орбиталей серы для строения и реакционной способности тиофенов. Результаты ранней работы Шомакера и Полинга [11] по изучению геометрии тиофена методом дифракции электронов были подтверждены работой [12] и уточнены с помощью микроволновой спектроскопии [см. формулу (1)]. Метод микроволновой спектроскопии дает очень точные данные [13]. Его результаты подчеркивают удивительно высокую степень двоесвязанности связи С—8, что не следует из обычной кекулевской структуры. С помощью-рентгеноструктурного анализа получены ценные данные о геометрии многочисленных производных тиофена [14], сопоставлены также данные микроволновой спектроскопии для широкого ряда гомо-и гетероциклических аналогов тиофена [15]. Квантовохимические [c.230]

    Наличие заместителя в -положении тиофенового цикла оказывает значительно большее воздействие на реакционную способность, чем в случае бензольных аналогов. Например, 2,5-диметил-тиофен успешно конкурирует с тиофеном и даже с 2-метилтиофеном при ацетилировании, а 2-алкокси- и 2-алкилтиотиофены наряду с ожидаемыми продуктами замещения в положении 5 образуют значительные количества 3-изомеров (см. табл. 19.1.3). Более того, дезактивирующие группы сильно затрудняют орго-замещение, даже еслн все остальные положения заняты. [c.237]

    Казалось бы, что поскольку элек рофильное замещение в ряду тиофена протекает легче, чем в ряду бензола, то нуклеофильное замещение должно быть менее эффективным. Это, однако, далеко от истины. Теоретические исследования, рассмотрение интермедиатов и экспериментальные данные показывают, что для обоих типов реакций замещения наблюдается сходное (более чем тысячекратное) увеличение реакционной способности (см. табл. 19.1.7). В отличие от бензолов при любом взаимном расположении галогена и нитрогруппы в молекуле галогеннитротиофена наблюдается сильная активация галогена в реакциях нуклеофильного замещения. Это становится понятным при рассмотрении интермедиатов Майзенхаймера (см., например, схемы 20, 21) (1) в о-комплексе, образуемом тиофеновым соединением, нитрогруппа более эффективно участвует в делокализации отрицательного заряда, чем в случае бензольного аналога (2) в случае тиофенов достигается лучщее, чем в случае бензолов, сопряжение нитрогруппы с кольцом, обусловленное больщим вкладом структур типа (37) по сравнению с (38)  [c.247]

    В гл. 2 рассмотрена реакционная способность, в целом класса гетероциклических соединений. Разделы этой главы можно читать при изучении реакций электрофильного замещения, скажем, в тиофене в то же время гл. 2 можно изучать всю сразу, не откладывая там подробно обсуждаются радикальные реакции замещения, реакции металлирования и реакции, катализируемые палладием. Роль этих поцессов в химии гетероциклических соединений существенно возросла с момента опубликования третьего издания. Следует также отметить, что в учебниках по общей органической химии таким процесса уделено относительно мало внимания. [c.11]

    Реакции электрофильного ароматического замещения гораздо чаще использую-ся в случае пятичленных электроноизбыточных ароматических соединений [12]. Такие соединения, как пиррол, тиофен и фуран, с чрезвычайной легкостью вступают в реакции электрофильного замещения, причем замещение проходит по любому положению цикла, однако предпочтительнее по положению, ближайшему к гетероатому, т. е. по а-положениям. Такие реакции облегчаются электронодонорными свойствами гетероатома, поэтому пиррол более реакционноспособен, чем фуран, который в свою очередь более реакционноспособен, чем тиофен. Количественное сравнение [13] реакционной способности этих гетероциклических соединений зависит от электрофильного реагента например, соотношение скоростей трифторацетилирования пиррола, тиофена и фурана равно, 5 10 1,5 10 1 [14], формилирование фурана проходит в 12 раз быстрее, чем тиофена [15], а ацилирование — в 9,3 раза [16]. Парциальные факторы скоростей протонного обмена по положениям аир 1-метилпиррола [17] равны соответственно 3,9 10 и 2,0-10 °, в случае фурана — 1,6 10 и 3,2 10 , в случае тиофена — 3,9 10 и 1,0-105 [18]. Соотношение скорости замещения по а- и р-положениям тиофена существенно различаются (от 100 1 до 1000 1) в зависимости от электрофильного агента [19]. Относительная реакционная спо- [c.37]

    Для 1,2- и 1,3-азолов характерны свойства как пятичленных электроноизбыточных гетероциклических соединений, так и гетероциклических соединений, содержащих иминный атом азота. Присутствие иминного фрагмента в азолах понижает их активность в реакциях электрофильного замещения по атому углерода как в результате индуктивного, так и мезомерного влияния. Кроме того, присутствие основного атома азота способствует образованию солей азолов в кислых средах. Например, в зависимости от кислотности среды нитрование пиразола может проходить либо через предварительное образование пиразолиевого катиона [30], либо с участием свободного основания [31]. Изучение протонного обмена, катализируемого кислотой, обнаружило следующий порядок реакционной способности пиразол > изоксазол > изотиазол. Среди пятичленных гетероциклических соединений с одним гетероатомом порядок активности в реакциях протонного обмена следующий пиррол > фуран > тиофен, причем каждое из этих соединений более активно в таких превращениях, чем гетероциклические соединения, содержащие иминный атом азота. При этом азолы более активны в реакциях протонного обмена, чем бензол, парциальные факторы скоростей для реакций по положению 4 пиразола, изоксазола и изотиазола равны 6,3 10 , 2,0 10 и 4,0 10 соответственно. Нитрование тиофена проходит в 3 10 раз быстрее, чем нитрование 4-метилтиазола [32]. Относительная активность тиофенового и тиа-зольного циклов в реакциях нитрования иллюстрируется приведенной ниже реакцией [33]  [c.39]

    Гетероароматические бор-, кремний и оловоорганические соединения проявляют реакционную способность, аналогичную реакционной способности родственных производных ароматических соединений, и нашли широкое применение в различных синтетических превращениях, связанных с гетероциклическими соединениями. В противоположность литиевым производным, такие элементоорганические гетероароматические соединения обычно достаточно устойчивы к действию воздуха и воды и вступают в широкий круг селективных реакций в относительно мягких условиях. Гетарилборные кислоты и станнаны нашли широкое применение в качестве металлоорганических компонентов в реакциях сочетания, катализируемых палладием (разд. 2.7.2.2) в таких превращениях используются и некоторые гетероароматические силаны, такие, как 2-(этилдифторсилил)тиофен [112], 2-(фтордиметил- [c.58]

    Из пятичленных гетероциклических соединений (пиррол, фуран, тиофен) пиррол наиболее подвержен реакциям с элекгрофилами, что связано с большей электронодонорной способностью нейтрального трехвалентного атома азота, а также с большей стабильностью положительно заряженного четырехвалентного атома азота. Этот факт находит простое подтверждение при сравнении относительной основности насыщенных аминов, сульфидов и эфиров. Ряд основности прекрасно иллюстрирует относительную реакционную способность пиррола, фурана и тиофена по отношению к атаке электрофила по атому углерода и спо- [c.305]

    Количественно большую реакционную способность пиррола по сравнению с реакционными способностями фурана и тиофена можно проиллюстрировать большой скоростью реакции пиррола с катионом фенилдиазония и азотистой кислотой ни фуран, ни тиофен в реакцию с этими элекгрофилами не вступают. Важно также отметить, что М,К-диметиланилин тоже легко реагирует с этими электрофильными реагентами, а анизол не реагирует. [c.306]

    Изоиндолы протонируются с образованием только одного катиона [5]. Электрофильное присоединение протона происходит по такому же типу, что и замещение в этих системах, однако существует относительно небольшое число исключений, вероятнее всего, в некоторой степени обусловленное нестабильностью незамещенных изоиндолов, изобензофуранов и бензо[с]тиофенов. Изучение детритирования показало, что реакционная способность при этом электрофиль-ном замещении для 2-метилизоиндола в Ю раз больше, чем для 1-метил-индола [9]. [c.495]

    Молекулы 1,3- и 1,2-азолов содержат один гетероатом в кольце, аналогичный атому азота в пиридине (иминный атом азота), а также один гетероатом, соответствующий атому азота в пирроле, атому серы в тиофене или атому кислорода в фуране. Следовательно, их реакционная способность представляет собой очаровательную комбинацию и общую взаимосвязь типов реакционной способности описанных ранее в этой книге пиридинов, с одной стороны, и пирролов, тиофенов и фуранов — с другой, с отличием в электроотрицательности гетероатомов, присущей таковым в пятичленных циклах. [c.503]

    Азолы по легкости, с которой они вступают в реакции электрофильного замещения, занимают промежуточное положение между пиридинами, с одной стороны, и пирролами, тиофенами и фуранами, с другой наличие элекгроноак-цепторной иминной группы оказывает влияние на пятичленные ароматические гетероциклы такое же, как и в шестичленных ароматических структурах (т. е. такое же, как при сравнении бензола с пиридином, гл. 4). Порядок реакционной способности пиррол > фуран > тиофен справедлив и для азолов, хотя наличие основного атома азота усложняет такое сравнение. Региоориентация электрофильной атаки становится более ясной при сравнении характера различных положений цикла активированного в пятичленных циклах и дезактивированного подобно а- и у-положениям в пиридине. [c.504]


Смотреть страницы где упоминается термин Тиофен реакционная способность: [c.94]    [c.221]    [c.393]    [c.119]    [c.273]   
Общая органическая химия Т.9 (1985) -- [ c.235 ]




ПОИСК





Смотрите так же термины и статьи:

ОБЩАЯ ХАРАКТЕРИСТИКА РЕАКЦИОННОЙ СПОСОБНОСТИ ПИРРОЛОВ, ТИОФЕНОВ И ФУРАНОВ

Тиофен

Тиофен квантовохимические расчеты реакционной способности



© 2025 chem21.info Реклама на сайте