Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фуран реакционная способность

    Распределение я-электронной плотности в молекуле пиррола также неравномерно. Эта плотность выше в а (а )-положении. Поэтому при реакции электрофильного замещения, которая у пиррола протекает значительно легче, чем у бензола, реагенты становятся в эти положения. По реакционной способности пиррол находится между фураном и тиофеном  [c.362]

    Нафталин и другие конденсированные циклические соединения в реакциях алкилирования по Фриделю—Крафтсу обычно дают плохие выходы продуктов, поскольку, будучи высоко реакционно способными, они взаимодействуют с катализатором. Гетероциклические соединения обычно тоже малопригодны как субстраты для этой реакции. И хотя алкилирование некоторых фуранов и тиофенов удалось осуществить, нет сообщений об истинном алкилировании пиридина или хино-лина [209]. Алкилирование пиридина и других азотсодержащих [c.350]


    Фурановое ядро подобно ядру бензола активируется заместителями I рода (стр. 334) его реакционная способность увеличивается и в то же время снижается устойчивость. Заместители П рода значительно снижают реакционную способность фуранового кольца. Поэтому альдегиды, кетоны и кислоты ряда фурана устойчивее, чем сам фуран и его гомологи. [c.415]

    Для пиррола, фурана и тиофена а-положение является более реакционноспособным, чем -положение. Величины + показывают, что по позиционной селективности эти гетероциклы можно расположить в ряд фуран > тиофен > пиррол. Следует отметить, что рассчитанные величины не могут в полной мер< служить основанием для вывода об относительной реакционной способности данных гетероциклов согласно экспериментальным [c.245]

    Ценность этой классификации реакций состоит в том, что она позволяет качественно, но вполне надежно оценить реакционную способность субстрата в зависимости от характера действующего на него реагента. Например, при атаке электрофильного реагента, субстрат тем активнее, чем легче он передает свои электроны для образования химической связи с последним. В ряду ароматических субстратов — циклопентадиенид-анион, фуран, бензол, пиридин, тропилий-катион — реакционная способность в электрофильных реакциях падает от первого к последнему. Напротив того, в реакциях с нуклеофильными реагентами, передающими свою электронную пару субстрату, реакционная активность в приведенном ряду субстратов последовательно возрастает и становится максимальной для катиона тропилия. Бензол в приведенном ряду занимает среднее положение, но его активность можно сильно изменять, вводя заместители (см. 2.4). [c.34]

    Заместители первого рода (ОН, ЫН ) увеличивают реакционную способность и тем самым неустойчивость бензольного ядра. Такое же влияние они оказывают на ядро фурана, и неудивительно, что окси- и аминофураны малодоступны (вследствие своей неустойчивости). Заместители второго рода, как и в ароматическом ряду, дезактивируют ядро фурана. Поэтому альдегиды, кетоны и кислоты фурана гораздо более устойчивы, чем сам фуран и его гомологи. [c.581]

    Имидазол наиболее реакционноспособен из всех трех 1,3-азолов, так же как пиррол превосходит по реакционной способности фуран или тиофен. С другой стороны, обладая наиболее высокой основностью, он, по всей вероятности, реагирует в форме соли. [c.327]

    ОБЩАЯ ХАРАКТЕРИСТИКА РЕАКЦИОННОЙ СПОСОБНОСТИ ПИРРОЛОВ, ТИОФЕНОВ И ФУРАНОВ [c.304]

    В этой главе рассмотрены общие принципы реакционной способности пятичленных гетероциклических соединений — пирролов, тиофенов и фуранов, а также приведен сравнительный анализ реакционной способности представителей этого класса гетероциклических соединений. [c.304]


    Общая характеристика реакционной способности пирролов, тиофенов и фуранов [c.305]

    Положение фурана по отношению к другим, так называемым ароматическим соединениям установлено Рейхштейном на основании реакционной способности в некоторых реакциях замещения [81]. Применив в качестве критерия отношение к реакции Фриделя—Крафтса, он установил следующий ряд, располагаемый в порядке повышения реакционной способности бензол, тиофен, фуран и пиррол. Таким образом, фуран подвергается замещению при более мягких условиях, чем бензол, но менее легко, чем пиррол. [c.111]

    Влияние заместителей на реакционную способность гетероциклических ядер подобно влиянию заместителей в бензоле. Так, лг-ориентирующие заместители до некоторой степени затрудняют дальнейшее замещение, а два таких заместителя очень сильно его затрудняют. Например, фуран-2,5-дикарбоновую кислоту не удается нитровать, сульфировать и галогенировать. Алкильные и арильные группы, галогены в качестве заместителей и конденсация с бензольными кольцами оказывают сравнительно небольшое влияние на легкость замещения. Гидроксильные и аминогруппы облегчают замещение однако соединения, содержащие эти группы, существуют либо в другой таутомерной форме, либо очень неустойчивы (см. стр. 195), поэтому о их реакциях замещения мало известно. [c.166]

    Пятичленные ароматические гетероциклы с одним гетероатомом (пиррол, фуран, тиофен и селенофен) обладают одинаковой электронной структурой, похожими методами синтеза и сходной реакционной способностью. [c.520]

    При Рсо—1ДР и параметрах /г = 2,0, /г =0,42 я-электронные плотности в фуране, бензофуране и дибензофуране очень хорошо согласуются с ориентацией при электрофильном замещении [20]. Различие между этими кислородсодержащими и соответствующими азотсодержащими гетероциклами заключается только в большей величине вспомогательного индуктивного параметра для атома кислорода (раздел П1, Г, 1). К сожалению, корреляция между я-электронной плотностью и реакционной способностью очень сильно зависит от величины вспомогательного индуктивного параметра. Например, этой корреляции не наблюдается, если при расчете молекулы фурана использовать меньшую величину Рсо и k =0 [91]. Значение таких корреляций, получающихся при некоторых величинах параметров, обсуждается в разделе V, А. [c.161]

    Положительным концом диполя являются гетероатомы, передающие для образования ароматической системы по одной паре р-электронов, а отрицательным — углеводородная часть гетероцикла. Поэтому ароматическое кольцо в этих соедине ниях имеет большую электронную плотность, чем бензол. По реакционной способности к бензолу наиболее близок тиофен в этом отношении его можно сравнивать с нафталином и ант раценом. По реакционной способности пиррол и фуран превос ходят даже фенол и анилин. [c.352]

    Пятичлеиные ароматические гетероциклические соединения, такие, как. фуран, тпофен п пиррол, галогепнруются, нитруются и сульфируются совершенно так же, как и другие ароматические соединения. Они, как правило, гораздо реакционноспособнее бензола и сходны по своей реакционной способности с фенолом и анилином (гл. 22 и 23) поэтому для электрофильного замещения в ряду гетероциклических соединений часто не требуются сильные катализаторы, как для замещения в бензоле. Так как и пиррол, и фуран разлагаются в присутствии протонных кислот, для них необходимы несколько-иные условия проведения обычных реакций. В реакции сульфирования в этих случаях источником 30,, вместо дымящей серной кислоты служит комплекс, образуем .1Й пиридином и 80 в качестве нитрующего агента можпо применить ацетилнитрат. [c.633]

    Следует более подробно рассмотреть дипольные моменты указанных гетероциклов, поскольку иногда допускают ошибку, принимая гетероатомы всех трех соединений за положительные концы диполей. Эта ошибка, по-видимому, вызвана тем впечатлением, что в системах с высокой реакционной способностью избыток отрицательного заряда должен быть сосредоточен на наиболее нуклеофильном атоме углерода. В действительности же отрицательные концы диполей как в фуране, так и в тиофене находятся на гетероатомах. [c.20]

    Предпринятое в последнее время изучение кинетики замещения по а- и р-положениям фурана и бензофурана, а также тиофена и бензотиофена показало, что влияние бензольного колыца проявляется в общем понижении реакционной способности гетероцикла. Особенно интересно то, что в бензофуране и бензотиофене реакционная способность Сг-атома снижена более или менее одинаково по сравнению с Сг-атомами фурана и тиофена, но в то же время реакционная способность Сз-атома как в бензофуране, так и в бензотиофене повышена по сравнению с р-углеродньгм атомом фурана и тиофена. Следовательно, способность бензотиофена реагировать преимущественно по третьему, а бензофурана по второму положениям отражает тот факт, что тиофен замещается по Сз-атому легче, чем фуран. Эти соотношения могут быть экстраполированы на пиррол и индол пиррол способен в небольшой степени замещаться по р-углеродному атому (например, нитрование идет по этому положению на 20%), тогда как индол замещается почти исключительно по положению 3. [c.324]

    Электрофильное замещение в пирроле, фуране и тиофене. Реакционная способность и ориентация [c.1019]


    Фуран проявляет высокую реакционную способность в отно-иенни электрофилов. Фураны, содержащие электронодонорные группы, неустойчивы к действию минеральных кислот, при этом ядет протонирование по одному из а-положений [10], которое может сопровождаться раскрытием кольца (см. разд. 18.4.9) или полимеризацией фураны с электроноакцепторными заместителями более стабильны. Вследствие такой чувствительности к действию кислот условия проведения электрофильного замещения необходимо тщательно контролировать. Механизм реакции часто не столь прост, как в случаях электрофильного замещения, характерных для бензоидных соединений, и может быт12 осложнен 1,2- и 1,4-присоединением к диеновой системе. [c.118]

    Реакции электрофильного ароматического замещения гораздо чаще использую-ся в случае пятичленных электроноизбыточных ароматических соединений [12]. Такие соединения, как пиррол, тиофен и фуран, с чрезвычайной легкостью вступают в реакции электрофильного замещения, причем замещение проходит по любому положению цикла, однако предпочтительнее по положению, ближайшему к гетероатому, т. е. по а-положениям. Такие реакции облегчаются электронодонорными свойствами гетероатома, поэтому пиррол более реакционноспособен, чем фуран, который в свою очередь более реакционноспособен, чем тиофен. Количественное сравнение [13] реакционной способности этих гетероциклических соединений зависит от электрофильного реагента например, соотношение скоростей трифторацетилирования пиррола, тиофена и фурана равно, 5 10 1,5 10 1 [14], формилирование фурана проходит в 12 раз быстрее, чем тиофена [15], а ацилирование — в 9,3 раза [16]. Парциальные факторы скоростей протонного обмена по положениям аир 1-метилпиррола [17] равны соответственно 3,9 10 и 2,0-10 °, в случае фурана — 1,6 10 и 3,2 10 , в случае тиофена — 3,9 10 и 1,0-105 [18]. Соотношение скорости замещения по а- и р-положениям тиофена существенно различаются (от 100 1 до 1000 1) в зависимости от электрофильного агента [19]. Относительная реакционная спо- [c.37]

    Для 1,2- и 1,3-азолов характерны свойства как пятичленных электроноизбыточных гетероциклических соединений, так и гетероциклических соединений, содержащих иминный атом азота. Присутствие иминного фрагмента в азолах понижает их активность в реакциях электрофильного замещения по атому углерода как в результате индуктивного, так и мезомерного влияния. Кроме того, присутствие основного атома азота способствует образованию солей азолов в кислых средах. Например, в зависимости от кислотности среды нитрование пиразола может проходить либо через предварительное образование пиразолиевого катиона [30], либо с участием свободного основания [31]. Изучение протонного обмена, катализируемого кислотой, обнаружило следующий порядок реакционной способности пиразол > изоксазол > изотиазол. Среди пятичленных гетероциклических соединений с одним гетероатомом порядок активности в реакциях протонного обмена следующий пиррол > фуран > тиофен, причем каждое из этих соединений более активно в таких превращениях, чем гетероциклические соединения, содержащие иминный атом азота. При этом азолы более активны в реакциях протонного обмена, чем бензол, парциальные факторы скоростей для реакций по положению 4 пиразола, изоксазола и изотиазола равны 6,3 10 , 2,0 10 и 4,0 10 соответственно. Нитрование тиофена проходит в 3 10 раз быстрее, чем нитрование 4-метилтиазола [32]. Относительная активность тиофенового и тиа-зольного циклов в реакциях нитрования иллюстрируется приведенной ниже реакцией [33]  [c.39]

    Из пятичленных гетероциклических соединений (пиррол, фуран, тиофен) пиррол наиболее подвержен реакциям с элекгрофилами, что связано с большей электронодонорной способностью нейтрального трехвалентного атома азота, а также с большей стабильностью положительно заряженного четырехвалентного атома азота. Этот факт находит простое подтверждение при сравнении относительной основности насыщенных аминов, сульфидов и эфиров. Ряд основности прекрасно иллюстрирует относительную реакционную способность пиррола, фурана и тиофена по отношению к атаке электрофила по атому углерода и спо- [c.305]

    Количественно большую реакционную способность пиррола по сравнению с реакционными способностями фурана и тиофена можно проиллюстрировать большой скоростью реакции пиррола с катионом фенилдиазония и азотистой кислотой ни фуран, ни тиофен в реакцию с этими элекгрофилами не вступают. Важно также отметить, что М,К-диметиланилин тоже легко реагирует с этими электрофильными реагентами, а анизол не реагирует. [c.306]

    При гидролизе (или алкоголизе) фуранов первоначально образуются катионы, которые вступают с водой (или спиртами) в реакции нуклеофильного присоединения, превращаясь в ациклические 1,4-дикарбонильные соединения или их производные. Этот процесс обратен реакции, лежащей в основе одного из главных способов синтеза фуранов (разд. 15.12.1.1). Диальдегид янтарной кислоты нельзя получить из незамещенного фурана, возможно, из-за его повышенной реакционной способности в условиях гидролиза, однако некоторые алкилфураны могут быть вполне успешно превращены в 1,4-дикарбонильные соединения [c.380]

    Молекулы 1,3- и 1,2-азолов содержат один гетероатом в кольце, аналогичный атому азота в пиридине (иминный атом азота), а также один гетероатом, соответствующий атому азота в пирроле, атому серы в тиофене или атому кислорода в фуране. Следовательно, их реакционная способность представляет собой очаровательную комбинацию и общую взаимосвязь типов реакционной способности описанных ранее в этой книге пиридинов, с одной стороны, и пирролов, тиофенов и фуранов — с другой, с отличием в электроотрицательности гетероатомов, присущей таковым в пятичленных циклах. [c.503]

    Азолы по легкости, с которой они вступают в реакции электрофильного замещения, занимают промежуточное положение между пиридинами, с одной стороны, и пирролами, тиофенами и фуранами, с другой наличие элекгроноак-цепторной иминной группы оказывает влияние на пятичленные ароматические гетероциклы такое же, как и в шестичленных ароматических структурах (т. е. такое же, как при сравнении бензола с пиридином, гл. 4). Порядок реакционной способности пиррол > фуран > тиофен справедлив и для азолов, хотя наличие основного атома азота усложняет такое сравнение. Региоориентация электрофильной атаки становится более ясной при сравнении характера различных положений цикла активированного в пятичленных циклах и дезактивированного подобно а- и у-положениям в пиридине. [c.504]

    Для соединений ряда фурана нет подробных данных относительно влияния заместителей на реакционную способность кислот, на константы диссоциации и на константы гидролиза сложных эфиров. В ряду бензола изучение подобной зависимости привело к получению констант замещения (а) и констант реакции (р) для мета- и па/)а-рядов [245]. Такие величины можно получить из данных Кетлина только для диссоциации 5-замещенных фуран-2-карбоновых кислот. Из этих данных для р может быть предложено значение, равное- - 1,394. [c.154]

    Ненасыщенные гетероциклические системы с одним гетероато-мом фуран (I), пиррол (II) и тиофен (III), хотя и содержат цис-диеновый фрагмент, но в общем не проявляют реакционной способности, характерной для аналогичных молекул, таких, как циклопентадиен. [c.97]

    Фуран, пиррол и тиофен обладают значительной реакционной способностью по отношению к обычным электрофильным реагентам. В этом смысле они напоминают наиболее реакционноспособные производные бензола, такие, как фенолы и алилины. Повышенная чувствительность к электрофильному замещению вызвана несимметричным распределением заряда в этих гетероциклах, в результате чего на углеродных атомах цикла имеется больший отрицательный заряд, чем в бензоле (см. стр. 98). Фуран обладает несколько большей реакционной способностью, чем пиррол, а наименее реакционноспособен тиофен. Следующий пример иллюстрирует это положение  [c.109]

    Концепцию ароматичности первоначально связывали со стабильностью бензола и отличием его реакционной способности от реакционной способности типичных ациклических полиенов. Существует традиционная точка зрения, что ароматические соединения склонны к сохранению ароматичности, т. е. вступают в реакции замещения, а не присоединения или раскрытия цикла. Эта точка зрения имеет силу, так как склонность к сохранению циклической системы в процессе реакции обусловлена большей стабильностью такого состояния. Реакционную способность, однако, нельзя рассматривать как критерий ароматичности, так как она зависит от разницы энергий основного н п )еходного состояний. Например, на основании критериев, обсуждаемых в разд. 2.2, пиррол можно считать более ароматичным, чем фуран, однако пиррол более реакци-онноспособея по отношению к электрофилам. Это обусловлено тем, что атом азота с неподеленной парой электронов гораздо легче поляризуется, чем атом кислорода, поэтому атом азота легче отдает электрон. Силабензол (рис. 2.5) можно привести в качестве примера гетероциклического соединения, имеющего значительный ароматический характер, однако по многим признакам он обладает высокой реакционной способностью соединение впервые удалось получить на аргоновых матрицах при 10 К. Его можно назвать неактивным только по сравнению с соединениями, содержащими изолированные т-связи углерод — кремний. [c.41]

    Электронные свойства циклической системы фурана оказывают влияние на реакционную способность заместителей в положении 2. Фурановое ядро - акцептор т-электроиов и донор т-электронов. т-Электронодонорные свойства кольца оказывают такое же влияние на заместители, как и в аналогичных пирролах стабильны катионы, имеющие заряд на а-углеродном атоме, а нуклеофильная атака по карбонильной группе фуран-2-карбоксальдегидов и 2-Фурилкетонов замедлена по сравнению с таковой для алифатических альдегидов и кетонов. 2-(Хлорометил)фуран нестабилен и [c.255]

    По отношению к злектрофилам тиофен проявляет меньшую реакционную способность, чем фуран, и гораздо меньшую, чем пиррол, ио он значительно более активен, чем бензол (фактор скорости 10 — 10 ). Реакции электрофильного замещения, следовательно, предпочтительны для тиофенов. Из-за своей повышенной ароматичности тиофеи скорее вступает в реакции замш ения, чйл присо-единшия, и не подвержен столь быстрому раскрытию цикла под действием кислот, как фуран. Ъюфен устойчив по отношению к водным растворам минеральных кислот, но неустойчив при взаимодействии со 100%-ной серной кислотой и сильными кислотами [c.258]

    Вследствие разницы в электроотрнцательностях атомов, вхо-дяиднх в кольцо, которая еще усиливается делокализацией электронов, как это ясно показано предельными структурами, гетероциклы такого рода совсем не так стабильны, как аналогичные шестичлениые кольца. В соответствии с этим возрастает и реакционная способность, так что фуран и пиррол, например, могу г подобно алифат] ческим диенам вступать в реакцию Дильса — Альдера. Стабильность системы может возрасти, если делокалнзацпя электронов приводит в противоположность рассмотренным выше формулам к снижению полярности соединения. В пирроле это имеет место при диссоциации протона, связанного с азотом. Отрицательный заряд, возникающий при этом на азоте, уменьшается мезомерией. По этой причине азот в пирроле обладает кислотным характером и легко образует калиевую соль  [c.78]

    Наиболее серьезным доводом в пользу того, что ориентация определяется я-электронными плотностями, считается электрофильное замещение в пирроле, фуране и их бензопроизводных [20]. До некоторой степени это можно объяснить умеренной или высокой реакционной способностью рассматриваемых соединений, так как, согласно Хэммонду [60], в этих случаях переходное состояние может быть похожим на исходное. Вычисленные я-электронные плотности, по-видимому, очень хорошо коррелируются с ориентацией при электрофильном замещении. Для дибензофурана и карбазола эта корреляция заметно лучше, чем получаемая при использовании энергий локализации [20]. [c.164]


Смотреть страницы где упоминается термин Фуран реакционная способность: [c.209]    [c.324]    [c.119]    [c.383]    [c.388]    [c.112]    [c.250]    [c.63]   
Химия справочное руководство (1975) -- [ c.364 , c.366 ]




ПОИСК





Смотрите так же термины и статьи:

Фуран



© 2024 chem21.info Реклама на сайте