Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидрирование циклоалканов

Таблица 5.2 Теплоты гидрирования циклоалканов Таблица 5.2 <a href="/info/38275">Теплоты гидрирования</a> циклоалканов

    Основной источник получения циклогексана—нефть. Главный метод — гидрирование бензола (95% общего объема производства), остальное количество циклогексана выделяют из бензиновых фракций нефтей, богатых циклоалканами. Гидрирование бензола позволяет получать наиболее чистый циклогексан (99,9 %). Для выделения циклогексана из нефтепродуктов получают узкие фракции нефти, обогащенные углеводородами Се и содержащие 10—14 % циклогексана. Затем производят четкую ректификацию на фракции, являющиеся концентратами с содержанием до 85 % циклогексана. При использовании дополнительных промежуточных стадий каталитического превращения аренов возможно получение фракций с содержанием 99 % циклогексана. [c.327]

    Реакция идет с выделением тепла в присутствии платинового или палладиевого катализаторов при комнатной температуре. Эти реакции играют значительную роль при дегидрировании циклоалканов и при гидрировании аренов. Так, винилциклогексен дает смесь этилциклогексана и этилбензола  [c.144]

    Каталитическое гидрирование обычно осуществляется в избытке водорода, что замедляет обратный процесс дегидрирования. Нужно отметить, что процесс дегидрирования очень важен при переработке нефти. Некоторые виды нефти богаты циклоалканами, особенно метилциклопентаном, 1,2-ди-метилциклопентаном, циклогексаном и метилциклогексаном. Эти циклоалканы, называемые также нафтенами, в процессе очистки нефти специально изомеризуют и дегидрируют до ароматических углеводородов (они подробно обсуждаются в гл. 15 и 16), которые имеют большое промышленное значение. [c.304]

    Ряд циклобутана. — Первое соединение этого ряда, диэтило- вый эфир циклобутандикарбоново [-1,1 кислоты I, было получено Перкино м мл. путем малонового синтеза (1887). В результате омыления и пиролиза замещенной малоновой кислоты И была получена циклобутанкарбоновая кислота III, но дал1)Нейшие попытки Перкина превратить ее в циклоалкан, лежащий в основе всего ряда, оказались безуспешными, так как при пиролизе кальциевой соли этой кислоты получался только этилен. Синтез циклобутана был впервые осуществлен с низкими выходами Вильштеттером (1907 следующим многостадийным путем. Синтезированная Перкином монокарбоновая кислота III была превращена через хлорангидрид п амид IV в амин V, из которого исчерпывающим метилированием был получен иодметилат VI, переведенный затем в четвертичное основание VII в результате гофманов-ского расщепления VII был получен циклобутен VIII, при осторожном гидрировании которого образовался циклобутан IX и бутадиен. [c.31]


    Сравнение скоростей гидрокрекинга углеводородов различных классов свидетельствует о том, что гидрирование полицикличе-ских структур до углеводородов, содержащих одно ароматическое или одно алициклическое кольцо, происходит быстро. Гидрирование аренов и циклоалканов с разруцеинем последнего кольца протекает сравнительно медленно. Относительно медленно проходит также гидрокрекинг алканов. Таким образом, в продуктах реакции накапливаются производные оноциклических аренов и циклоалканов, а также алканы, преимущественно разветвленные. [c.297]

    Следует иметь в виду, что, как показано далее, изучение каталитического гидрирования циклоалкенов и трактовка полученных результатов строились в основном на представлениях классической стереохимии, а конформационный подход использовался сравнительно мало. При гидрировании ароматических углеводородов конформационные свойства исходных и конечных молекул различаются гораздо более существенно, чем при гидрировании циклоалкенов, а потому для. понимания получаемых результатов приходилось учитывать конформационные особенности циклоалканов. Вследствие этого раздел, посвященный конформационным особенностям циклоалканов, непосредственно предшествует разделу, в котором рассмотрено гидрирование ароматических углеводородов ряда бензола. [c.20]

    Определенный интерес представляет также изучение стереоселективности гидрирования тройной связи циклоалкинов. Частичное гидрирование циклононина, циклодецина и циклоундецина над различными палладиевыми катализаторами приводит, как иравило, к чис-алкенам, т. е. происходит цис-присоедннение водорода [50—55]. Условия и результаты гидрирования этих циклоалканов на различных Pd-катализаторах приведены в работе [34]. [c.36]

    Каталитическое гидрирование. Присоединение водорода к алкенам или циклоалкенам приводит к алканам или соответственно циклоалканам. В присутствии специальных платиновых и палладиевых катализаторов эта реакция в большинстве случаев протекает уже при нормальных условиях. В промышленности используют менее активные катализаторы, и поэтому работают при повышенных температурах (200—300 ""С) и при высоком давлении. [c.225]

    Гидрирование циклоалканов на катализаторе. [c.329]

    Так, реакция каталитического гидрирования имеет аналитическое значение для гетероатомных соединений, которые переводятся таким образом в сравнительно легко анализируемые углеводороды. Комбинирование реакции дегидрирования циклоалканов до аренов со скелетной изомеризацией пятнчлснных циклоалканов, которая протекает с расширением цикла, позголило дать полную характеристику различных типов циклоалканов в нефтяных фракциях. [c.80]

    Сравнительное гидрирование циклоалканов показало, что его скорость падает в ряду циклопропан, циклобутан, циклопентан. [c.384]

    Тетралин и декалин получают гидрированием нафталина с никелевым катализатором соответственно в паровой и жидкой фазах. Существует ряд лабораторных л[етодов получения циклоалканов, которые хорошо описаны в учебниках по органической химии и здесь не рассматриваются. [c.146]

    Трудность разрыва С—С-связей возрастает в порядке 2—3(4—5), 3—4, 1—2 (1—5). Сравнительное гидрирование циклоалканов показало, что его скорость падает в ряду циклопропан, циклобутан, циклопентан. Циклогексан устойчив к гидрированию. [c.373]

    В работах Смита и Бэрвелла [14], а также Соважа с сотр. [9, 10], предлагается другой путь образования стереоизомерных циклоалканов. Эти авторы полагают, что промежуточной стадией гидрирования может быть адсорбированный по диссоциативной схеме радикал (VI), который далее реагирует с образованием как цис-, так и 7-ранс-изомера  [c.29]

    Реакции гидрогенолиза циклоалканов с образованием соответствующих парафиновых углеводородов в присутствии катализаторов гидрирования давно уже привлекают внимание исследователей. Для трех- и четырехчленных циклов, обладающих значительным бейеровским напряжением, реакцию гидрогенолиза долгое время  [c.99]

    Соотношение реакций распада гидрированного кольца и образования циклоалканов изменяется незакономерно и с большим разбросом данных, так как это третья ступень превращения и слишком велико влияние трудно учитываемых факторов. [c.192]

    При гидрировании фенолов в присутствии высокотемпературных катализаторов или в термическом процессе без катализатора спирты не образуются совсем основными продуктами являются ароматические и алициклические углеводороды, а также небольшое количество циклоалкенов Образование циклоалканов и циклоалкенов нельзя объяснить гидрированием промежуточно образующегося бензола, так как бензол гидрируется медленнее фенола, а в специально подобранных условиях не гидрируется совсем. Если в этих условиях гидрировать фенол, то все равно образуется 10—30% циклогексана Было предложено объяснение, основанное на протекании двух параллельных реакций  [c.195]

    Используют бифункциональный катализатор, сочетающий кислотную и гидрирующе-дегидрирующую функции. Кислотную функцию обычно выполняет оксид алюминия, гидрирз ще-дегидрирующую — металлы Vlli группы, главным образом платина. Наиболее широкое распространение получили бифункциональные алюмоплатиновые катализаторы, в которых платина в тонкодисперсном состоянии нанесена на оксид алюминия. Платина активна в реакциях гидрирования и дегидрирования. Она способствует образованию аренов и гидрированию промежуточных алкенов. Содержание платины в катализаторе составляет обычно 0,3-0,65 %. Увеличение концентрации платины повышает активность катализатора и октановое число бензина. Однако чрезмерно высокое содержание платины нежелательно, так как при этом усиливается роль реакций деметилирования аренов и расщепления циклоалканов, уменьшающих выход бензина. [c.130]


    Гидрирование двух низших циклоалканов, циклопропана и циклобутана, приводит соответственно к пропану и бутану. [c.109]

    II тип. кривые общей и удельной активности имеют максимумы, причем максимум удельной активности лежит в более разведенных слоях (рис. 16, 6), чем максимум общей активности. Кривая общей активности часто стремится к насыщению и достигает некоторого предела, после чего общая активность не зависит от степени заполнения. Удельная активность проходит через максимум при некоторой степени заполнения. Этого типа зависимостью описываются процессы гидрирования олефиновых, ацетиленовых н ароматических углеводородов и дегидрирование циклоалканов на различных адсорбционных катализаторах. Максимумы кривых общей и удельной активностей лежат в области сильных разведений 1(Н— 10- мрноатомарного слоя катализатора на носителе и только в этой области заполнений в полной мере применимы последующие выводы теории активных ансамблей. [c.107]

    Выходы в реакции сильно зависят от значения п и удовлетворительны лишь для /г = 5 или 6. Кроме того, существует много специфических методов получения циклоалканов определенных размеров, однако все они в данной книге не рассматриваются. В качестве примера приведем метод синтеза циклогексана путем каталитического гидрирования бензола  [c.37]

    Наиболее широкое распространение получили бифункциональные алюмоплатино-вые катализаторы, в которых платина в тонкодисперсном состоянии нанесена на оксид алюминия. Платина активна в реакциях гидрирования и дегидрирования. Она способствует образованию аренов и гидрированию промежуточных алкенов. Содержание платины в катализаторе составляет обычно 0,3-0,65 %. Увеличение концентрации платины повышает активность катализатора и октановое число бензина. Однако чрезмерно высокое содержание платины нежелательно, так как при этом усиливается роль реакций деметилирования аренов и расшепления циклоалканов, уменьшающих выход бензина. [c.222]

    Получение. Среди циклоалканов наиболее важным в техническом отношении является циклогексан. Промышленный способ — гидрирование бензола на никелевом катализаторе  [c.248]

    Циклоалканы можно получить гидрированием циклоалкинов. Окислительная конденсация некоторых терминальных диацетиленов в водном этаноле под действием кислорода в присутствии хлорида меди(1) и хлористого аммония (см. разд. 2.6.2.1) дает циклические димеры, тримеры, тетрамеры, пентамеры и высшие циклические полиацетилены. Полное гидрирование этих циклических полиацетиленов приводит к соответствующим насыщенным углеводородам. Используя этот метод Зондхеймер и сотр. получили циклоалканы, содержащие 16, 18, 20, 21, 24, 27, 28, 30, 32, 36, 40, 45, 54 атомов углерода до этой работы самым большим известным цик-лоалканом был циклоалкан С34 [127]. [c.144]

    Реакции образования циклоалканов м) Реакция гидрирования аренов (Ргид)  [c.69]

    Перспективным направлением гидрокрекинга является переработка масляных фракций (вакуумных дистиллятов и де-асфальтизатов). Глубокое гидрирование масел позволяет повысить индекс вязкости с 36 до 85—110, снизить содержание серы с 2 % до 0,04—0,1 °/о. почти на порядок уменьшить коксуемость, снизить температуру застывания. Подбирая условия (температуру, объемную скорость подачи сырья, катализатор), можно получать масла с высоким индексом вязкости практически из любых нефтей. Для ограничения деструктивных процессов и увеличения выхода целевых продуктов процесс часто осуществляют в две стадии. На первой стадии (температура 420—440 °С и давление 20—30 МПа) на ЛНМ-катализаторе происходит гидроочистка и гидрирование полициклических соединений. Высокое давление необходимо для глубокого расщепления и гидрирования полициклических аренов и циклоалканов, а также [c.392]

    При каталитическом крекинге образуется меньшее количество газов (метана, этана) и больше жидких углеводородов (С5—Сю), чем при термическом крекинге. Полученный бензин содержит меньше непредельных, больше ароматических углеводородов, образующихся в результате циклизации и дегидрирования алканов, и больше изоалканов. Изоалканы получаются в результате изомеризации и гидрирования первично образующихся при крекинге алкенов (необходимый водород получается при образовании ароматических углеводородов из циклоалканов в присутствии катализатора). [c.57]

    Из разд. 2.6 мы знаем, что теплота сгорания — это количество тепла, выделяющееся при сгорании I моля соединения до двуокиси углерода и воды. Как и теплоты гидрирования (разд. 6.4 и 8.16), теплоты сгорания часто могут дать полезную информацию об относительной устойчивости органических соединений. Соответствуют ли данные по теплотам сгорания различных циклоалканов предположению Байера о малой устойчивости циклов меньшего или большего размера, чем циклопентан или циклогексан  [c.270]

    Гидрирование аренов до циклоалканов можно осуществить, используя ряд различных гетерогенных каталитических систем [99]. [c.390]

    Реакция гидрирования бензола в циклогексан была уже рассмотрена. Аналогично на №-Ренея гидрируются водородом все алкилпроизводные бензола. Гидрирование идет до циклогексана и его производных. Этот метод является важнейшим источником синтеза циклоалканов. Нафталин каталитически гидрируется до тетрагидронафталина (тетралин), а затем до октагидронафталина (декалин)  [c.372]

    Химические методы разделения основаны на различной реакционной способности компонентов в реакциях гидрирования, дегидрирования, сульфирования, изомеризации, галогенирова-ния и т. д. Так, реакция каталитического гидрирования имеет аналитическое значение для гетероатомных соединений, которые переводят таким образом в сравнительно легко анализируемые углеводороды. Комбинирование реакции дегидрирования циклоалканов до аренов со скелетной изомеризацией пятичленных циклоалканов, которая протекает с расширением цикла, позволило дать полную характеристику различных типов циклоалканов в нефтяных фракциях. [c.99]

    Новейшими методами изучен индивидуальный углеводородный состав фракции 140—180°С нефти Понка-Сити. Было выделено и идентифицировано 49 алканов и циклоалканов— 84% от всех возможных углеводородов погона, или 10% в пересчете на нефть, в том числе шесть диметилоктанов из 12 возможных 2,4-, 2,5-, 2,6-, 3,4-, 4,4- и 4,5-. Остальные шесть диметилоктанов 2,2-, 2,3-, 2,7-, 3,3-, 3,5- и 3,6—по-видимому, содержатся в нефти лишь в незначительных количествах. Два углеводорода — 2,6-диметилоктан и 2-метил-З-пропилгексан — содержатся в нефти в необычно больших количествах (0,55 и 0,64%). Первый из них может быть отнесен к гидрированным аналогам ациклических изопреноидов второй мог произойти из моноциклического терпена — сильвестрена. Содержание каждого из остальных углеводородов не превышает сотых долей процента. [c.148]

    С повышением температуры скорость реакций гидрирования возрастает. Однако верхний предел температуры ограничен (400—420 °С), что связано с неблагоприятным термодинамическим равновесием гидрирования тиофенов и, вероятно, также хинолина и бензохинолина. Кроме того, повышение температуры способствует реакциям гидрокрекинга, дегидрирования полициклических циклоалканов и коксообразованию. В зависимости от качества исходного сырья и требуемого качества очищенного продукта гидроочистку проводят при температуре 250—420 °С. [c.376]

    Гидрирование угля. Гидрирование (обогащение водородом) каменного или бурого угля происходит под действием водорода только в присутствии катализатора (оксиды и сульфиды молибдена, вольфрама, никеля) и при высоких температурах (450—470 С) Процесс проводят в специальных реакторах — автоклавах, выдер живающих давление до 30 МПа (300 атм). Уголь и катализатор рас тирают в тонкий порошок и суспендируют в органическом раство рителе (продуктах переработки нефти). Смесь нагревают и в авто клав вводят водород (Ф. Бергиус, 1925). Этот процесс часто назьша ют методом сжижения угля. В результате получают смесь различных алканов и циклоалканов, которые используются в качестве моторного топлива. [c.90]

    Термическая деструкция и гидрирование. Термодинамически наиболее выгодным является распад циклоалканов до элементов и дегидрирование циклопентанов до циклопентадиенов, а циклогексанов — до аренов. Однако скорость этих реакций, требующих распадов по С-Н связям, на несколько порядков ниже, чем скорость крекинга по связям и С-С. Поэтому главными продуктами крекинга являются низшие алканы и алкены, диены и водород. [c.136]


Смотреть страницы где упоминается термин Гидрирование циклоалканов: [c.127]    [c.54]    [c.256]    [c.307]    [c.310]    [c.313]    [c.146]    [c.719]   
Органическая химия (1979) -- [ c.214 ]

Органическая химия (1972) -- [ c.59 ]

Курс органической химии Издание 4 (1985) -- [ c.99 ]

Органическая химия Издание 2 (1976) -- [ c.67 , c.68 ]

Органическая химия Издание 3 (1980) -- [ c.63 ]




ПОИСК





Смотрите так же термины и статьи:

Циклоалканы



© 2024 chem21.info Реклама на сайте