Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидрирование ароматических углеводородов ряда бензола

    В этой главе рассмотрено каталитическое гидрирование циклоалкенов и ароматических углеводородов ряда бензола. Изучение этих реакций тесно связано, так как многие исследователи считают, что образование циклоалкенов является промежуточной стадией гидрирования аренов поэтому, не зная закономерностей гидрирования циклоалкенов, трудно разобраться в механизме превращения алкилбензолов в соответствующие циклоалканы. Хотя эта точка зрения и не является общепризнанной, она заслуживает серьезного внимания. [c.20]


    Многие из реакций, сопровождающихся нарушением ароматической системы временным (реакции электрофильного и нуклеофильного замещения в ароматическом ядре) или окончательным (озонирование, гидрирование, синтез гексахлорана и валентных изомеров при облучении), уже были рассмотрены (см, соответственно, разд 12 1 и 12 2, а также разд 11 1 и 11 3) Обсудим некоторые наиболее важные из не рассмотренных ранее реакций углеводородов ряда бензола, позволяющих использовать их для синтеза неароматических соединений (ароматическое ядро в этом случае модифицируется в неароматический фрагмент) [c.185]

    В интересном цикле работ С. Л. Кипермана с сотр. [103—106] проведено комплексное исследование кинетики и механизма гидрирования бензола и его ближайших гомологов с применением кинетических, изотопных, адсорбционных и расчетных методов. Исследование кинетики гидрирования толуола в области обратимости процесса показало, что скорость реакции проходит через температурный максимум и характеризуется температурным коэффициентом, меньшим единицы. При переходе от одного углеводорода к другому скорость гидрирования на М1-катализаторе изменяется в ряду бензол > этилбензол > толуол > л-ксилол л-кси-лол>мезитилен но закономерных изменений скоростей изотопного обмена как в ароматическом кольце, так и в алкильных заместителях не наблюдается. Полученные данные указывают, по мнению авторов [106], на различие механизмов реакций гидрирования и Э—Н-обмена. [c.56]

    Таким образом, процессы деметилирования представляют собой высокотемпературные процессы гидрокрекинга, в которых создаются максимально благоприятные условия для радикальных реакций расщепления и всеми мерами предотвращается гидрирование ароматических углеводородов., Разработано много модификаций как каталитических, так и некаталитических процессов деметилирования (см. гл. 1, а также обзоры ), различающихся сырьем и технологическими параметрами. Применение катализаторов позволяет снижать температуру процесса на 100—150 °С (500—550 против 650—700 °С), что в свою очередь снижает капитальные вложения вследствие применения более дешевых металлов для изготовления оборудования, но повышает стоимость эксплуатации из-за расходов на производство и регенерацию катализатора. В зависимости от конкретных экономических условий применяются и каталитические, и некаталитические процессы в настоящее время в ряде стран до 20—25% бензола и более 50% нафталина получают при помощи процессов гидродеалкилирования Все процессы протекают под давлением водорода. [c.327]


    Описание гидрирования ароматических соединений с функциональными группами в качестве заместителей выходит за рамки настоящей книги, однако сказать о них несколько слов полезно для большей полноты картины. Гидрирование функциональных производных бензола протекает сложнее, чем в ряду углеводородов. Показано [111 —112], в частности, что реакционная способность ароматических соединений в процессе каталитического гидрирования существенно зависит от природы заместителя. [c.57]

    П.З. Гидрирование ароматических углеводородов ряда бензола [c.45]

    Уменьшение общего количества колец в гидрогенизатах, полученных при каталитическом гидрировании высокомолекулярных конденсированных бициклоароматических соединений нефти, объясняется главным образом реакцией гидрогенизола сернистых гетероциклических соединений, сопутствующих этой фракции, и, возможно, отчасти гидрогенолизом пентаметиленовых колец. Полициклические конденсированные системы, образованные шестичленными карбоциклическими кольцами, в этих условиях могут лишь насыщаться водородом в результате гидрирования ароматических ядер, не изменяя своего углеродного скелета. При гидрировании высокомолекулярных конденсированных бициклоароматических соединений из радченковской нефти [5, 6] в присутствии N1 Ренея к моменту полного удаления из них серы 54% всех ароматических ядер сполна насыщаются водородом, переходя в циклопарафиновые структуры, а 33% конденсированных ароматических ядер гидрируются частично, переходя в углеводороды ряда бензола, в которых бензольное кольцо соединено в конденсированной циклической структуре с несколькими полиметиленовыми кольцами. [c.229]

    ИЗОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ (карбоциклические соединения) — класс органических соединений, характеризующийся наличием колец (циклон) из атомов углерода. И. с. подразделяются на два ряда алициклические и ароматические соединения. И. с. могут содержать различное чис.то атомов углерода в цикле, различное число циклов, связанных между собой в молекулу. В зависимости от числа циклов в молекуле различают одноядерные, или моноциклические, би-, три- и полициклические соединения. Очень часто, в особенности в ароматическом ряду, циклы имеют два общих атома углерода, например, нафталин, антрацен и др. Ароматические и алициклические соединения часто связаны между собой взаимными переходами. Гидрированием бензола, например, можно получить циклогексан. С Другой стороны, дегидрированием циклопарафинов получают ароматические углеводороды. И. с. и их производные имеют большое прак- [c.106]

    В реакциях гидрирования (в частности, при гидрировании ароматических углеводородов и олефинов) оказались эффективными катализаторы типа Циглера - Натта, содержащие алюминий-, магний- или литийорганические соединения переходных металлов. Так, при гидрировании бензола активность циглеровских катализаторов падает в ряду  [c.569]

    Скорость гидрирования различных ароматических углеводородов зависит от их строения, а также от числа, характера и положения заместителей. Так, скорость гидрирования ароматического ядра уменьшается в ряду фенантрен-антрацен-нафталин-бензол. Конденсированные ароматические углеводороды гидрируются быстрее моноциклических ароматических углеводородов, но медленнее олефинов [42]. Их гидрирование проходит через ряд ступеней последовательного насыщения водородом ароматических колец, причем скорость гидрирования каждой последующей ступени меньше предыдущей. Наличие заместителей и гидрированные кольца тормозят гидрирование [42]. Механизм гидрирования зависит от природы применяемого катализатора [43 . [c.55]

    Простейшим представителем ряда ароматических углеводородов является бензол, СеНб- Мы видели, что бензол при гидрировании легко переходит в циклогексан, а последний при дегидрировании — обратно в бензол. Тем самым устанавливается тесная взаимосвязь между двумя классами углеводородов — циклопарафинами и ароматическими углеводородами. Название свое они получили от смол или бальзамов, имеющих приятный запах (аромат), из которых они первоначально добывались. [c.98]

    Следует иметь в виду, что, как показано далее, изучение каталитического гидрирования циклоалкенов и трактовка полученных результатов строились в основном на представлениях классической стереохимии, а конформационный подход использовался сравнительно мало. При гидрировании ароматических углеводородов конформационные свойства исходных и конечных молекул различаются гораздо более существенно, чем при гидрировании циклоалкенов, а потому для. понимания получаемых результатов приходилось учитывать конформационные особенности циклоалканов. Вследствие этого раздел, посвященный конформационным особенностям циклоалканов, непосредственно предшествует разделу, в котором рассмотрено гидрирование ароматических углеводородов ряда бензола. [c.20]

    Простейшим представителем ряда ароматических углеводородов является бензол, СеНе. Мы видели, что бензол при гидрировании легко переходит в циклогексан, а последний при дегидрировании обратно в бензол. Тем самым устанавливается тесная взаимосвязь между двумя классами углеводородов — циклопарафинами и ароматическими углеводородами. Название свое они [c.89]


    Содержание самого бензола в каменноугольной смоле невелико и составляет всего 0,05—0,1%. Основное количество бензола извлекается из коксового газа путем абсорбции высококипящими фракциями каменноугольной смолы (тяжелое масло). Сырой коксовый газ содержит 25—35 г/м - смеси ароматических углеводородов примерно следующего состава 70—80% бензола, 16—20% толуола, 5% ксилолов и 2% прочих соединений. Образовавшийся при сухой перегонке коксовый газ пропускают через ряд холодильников для отделения каменноугольной смолы, а затем через орошаемые водой скрубберы для поглощения содержащегося в нем аммиака. Освобожденный от смолы и аммиака газ подается на абсорберы для извлечения ароматических углеводородов. Абсорбированные ароматические углеводороды отделяются от масла отгонкой, после чего очищаются серной кислотой или гидрированием под давлением (для освобождения от сернистых и непредельных соединений). Выделение индивидуальных углеводородов из полученного сырого бензола производится дистилляцией. [c.434]

    В табл. 13 представлены кинетические константы гидрирования некоторых ароматических углеводородов. Из приведенных данных видно, что экспериментально определенная кажущаяся энергия активации реакции гидрирования бензола уменьшается в ряду [c.144]

    Нафтеновые и ароматические углеводороды одного и того же строения имеют различную вязкость из приведенных в табл. 47 и 48 данных следует, что наибольшей вязкостью обладают гомологи циклогексана, наименьшей — гомологи бензола гомологи циклопентана занимают среднее положение. Соответственно углеводороды нафтено-ароматического ряда, а также частично гидрированные бициклические ароматические углеводороды имеют более высокую вязкость, чем соответствующие ароматические [5, 6, 7]. [c.114]

    По грубым подсчетам М. С. Немцова [10] для более сложных ароматических углеводородов нужно ожидать уменьшения глубины гидрирования по сравнению с бензолом. Данные, полученные позднее А. А. Введенским [9] для ряда ароматических углеводородов (при нормальном давлении и температурах от 150 до 500° С), подтверждают предположение М. С. Немцова. [c.26]

    Изучение кинетики гидрирования ароматических углеводородов очень важно как с теоретической, так п с практической точек зрения (производство циклогексана из бензола, тетралина и декалина из нафталина и т. д.). В сходных условиях скорость гидрирования углеводородов различных рядов уменьшается в следующем порядке алкены > циклоалкены > нафталин > бензол > алкилбензолы > > арилбензолы. [c.241]

    Метод дегидрирования особенно удобен при определении строения природных, сильно гидрированных циклических углеводородов путем превращения их в ароматические углеводороды (которые гораздо легче идентифицировать), но в ряде случаев он может быть и препаративным (детальный обзор [1], более краткий [2]). Наиболее часто в качестве дегидрирующих агентов применяются сера, селен, или такие металлы, как платина или палладий, а также и другие металлы, такие, как никель или родий, и такие соединения, как хлоранил при действии света или без него [3, 4], 2,3-дихлор-5,6-дициан-1,4-бензохинон [51 и тритилперхлорат [6]. Последний, по-видимому, наиболее эффективен для превращения перинафтанонов в перинафтеноны и хроманонов в хромоны [71. В случае серы работают при сравнительно низких температурах (230—250 °С) селен требует более высокой температуры (300—330 °С). При использовании каталитических методов (Р1 или Рб) соединение в паровой фазе можно пропускать над катализатором, нагретым при 300— 350 °С, однако удобнее работать в жидкой фазе. Как правило, хорощие результаты при дегидрировании дает нагревание с одной десятой частью 10%-ного палладированного угля при 310—320 °С. Иногда при дегидрогенизации серой или селеном в качестве растворителей используют нафталин или хиполип. Пропускание через реакционную смесь углекислого газа, а также энергичное кипячение облегчают удаление водорода можно также использовать акцепторы водорода, например бензол [81 или олеиновую кислоту [9]. [c.62]

    Наиболее распространены процессы селективной гидроочистки, направленные, в частности, на удаление серы и азота из бензинов, идущих на рифорнинг, дизельных и котельных топлив. Эти процессы должны осуществляться без гидрирования ароматических углеводородов, которое приводит к перерасходу дефицитного водорода, а в ряде случаев к снижению качества продуктов гидропереработки (сырье для получения сажи, бензины перед риформингон, бензол-толуол-кси-лольная фракция, получаемая при пиролизе бейзинов и др.). В процессах гидрооблагораживания нефтяного сырья, направленных на получение реактивных топлив и специальных сортов масел, гидроочистка и гидрирование ненасыщенных углеводородов не должны сопровождаться реакциями расщепления, которые приводят к изменению фракционного состава и соответственно снижению выхода целевых продуктов. Протекание всех перечисленных выше реакций необходимо в процессах [c.2]

    Ароматические углеводороды Продукты гидрирования Ni-Ренея 80 бар, 80—120° С. По скорости гидрирования вещества располагаются в ряд пиридин > > фенол > бензол > толуол > анизол [2165] [c.115]

    Получение глубокоочищенных сортов бензола (для синтеза) представляет собой очень сложную техническую задачу, которая не решается в рамках существовавшей ранее обычной технологической схемы переработки сырого бензола. Создание и развитие каталитической гидроочистки тюзволило получать бензол, свободный от примесей сернистых и непредельных соединений. Однако метод этот, помимо того, что требует больших капитальных затрат и эксплуатационных расходов, в ряде случаев вызывает затруднения при получении бензола с высокой температурой кристаллизации. Эти затруднения связаны с увеличенным содержанием насыщенных углеводородов вследствие гидрирования содержащихся в исходном бензоле непредельных соединений и возможного в незначительной степени гидрирования ароматических углеводородов. [c.7]

    Данные, полученные при хроматографическом анализе продуктов глубокого гидрирования высокомолекулярных конденсированных бициклоароматических углеводородов из ромашкинской нефти в присутствии N 3—— А120з-катализатора [80], наглядно подтверждают это положение. Из восьми фракций, собранных при хроматографии гидрогенизата, шесть фракций, составляющие 90% гид-рогенизата, имели По = 1,4878 ч- 1,4906 и по этому показателю должны быть отнесены к легким ароматическим углеводородам, т. е. к углеводородам, содержащим в молекуле бензольное кольцо. Между тем элементарный анализ показал, что общая формула всех этих фракций (С Н2л-4.7) сильно отклоняется от общей формулы, отвечающей наиболее бедному водородом гомологическому ряду ароматических углеводородов, бензолу, С Н2п-б- Структурно-групповой анализ, реакция Настюкова и спектральный анализ согласованно показывали или отсутствие в этих фракциях бензольного кольца или же в отдельных фракциях лишь следы его. [c.231]

    Совершенно иначе ведут себя представители углеводородов этого класса в процессе деструктивной гидрогенизации в присутствии катализаторов под давлением водорода многоядерные ароматические углеводороды при температурах до 450° вначале присоединяют водород, образуя соответствующие продукты гидрирования — гидрюры, которые в процессе гидрогенизации распадаются с образованием главным образом гомологов ряда бензола и его гидрюров. Это подтверждается рядом проведенных исследований. [c.30]

    Образование высших углеводородов (обычно ароматических) при пиролизе ацетилена наблюдалось целым рядом исследователей в частности, Meyer и его сотрудники выделили из поодуктов пиролиза следующие углеводороды гексен, бензол, толуол, о-, т- и /)-ксилолы, стирол, псевдокумол, мезитилен, инден, гидринден, нафталин, гидрированный нафталин, 1- к 2- метилнафталины, 1,4-ди-метилнафталин, дифенил, аценафтен, флуорен, антрацен, фенатрен, флуорантрен, пирен и хризен. [c.96]

    Ароматические углеводороды. В отличие от крекинга, при гидрогенизации не происходит конденсации ароматических углеводородов. Бензол и его гомологи гидрируются в углеводороды циклогексанового ряда, прячем наивысшая скорость гидрирования присуща бензолу. С увелхгаением числа боковых групп скорость гидрирования падает. [c.439]

    Для каждой из рассмотренных до сих пор простых сопряженных систем имелась одна структура, стабильность которой была значительно больше, чем у любой из остальных структур. Вследствие этого резонанс ид сл лишь небольшое значение иначе говоря, реальные структуры молекул лишь немного отличались от наиболее стабильных структур, и поэтодму энергии резонанса были малы. Они даже настолько малы, что можно сомневаться в их реальности. Действительно, для определения значений энергий резонанса нужно оценить, какую теплоту гидрирования рассматри-вае .юе вещество имело бы в отсутствие резонанса. Ошибки в этих оценках входят, конечно, в найденные значения энергий резонанса. Поэтому очень хорошо, что имеются также данные для ряда ароматических углеводородов, у которых энергии резонанса так велики, что небольшие ошибки в их точных значениях не существенны. Наблюдаемые теплоты гидрирования этих веществ также приведены в табл. 3.2. Следует указать, что бензол и все его простые алкильные производные имеют энергии резонанса около 35 ккал моль. Эта величина примерно в 10—15 раз больше, чем энергии резонанса простых сопряженных диенов, и примерно в 5 раз больше, чем у циклогептатриена. [c.91]

    Б. Алкилирование бензола. Г омологи бензола обладают комплексом ценных качеств. В связи с этим вопросу алкилирования бензола уделяется значительное внимание. Для синтеза алкилбензолов был предложен ряд методов воздействие натрия на смесь бромо-производных бензола и алкана, реакция Гриньяра, гидрирование алкил-арил-кетонов, конденсация спиртов с бензолом (Цукерваник), алкилирование бензола алкильными эфирами кислот, алкилирование ароматических углеводородов галоидалкилами, парафинами (Ипатьев с сотрудниками) и конденсация олефинов с бензолом. Промышленное применение имеет последний метод. [c.278]

    Как известно, гидрирование многокольчатых конденсированных ароматических углеводородов протекает через ряд последовательных ступе-нгй — ДИ-, тетра-, окта-, додекагидрюров гидрирование завершается образованием полностью насыщенных конденсированных пергидрюров. Для дву- и трехкольчатых конденсированных ароматических углеводородов скорости первых стадий гидрирования во много раз превышают скорости конеч1Ш1х нафталин гидрируется в тетралин в 23 раза быстрее бензола, а тетралин в декалин — только в 2,5 раза антрацен гидрируется в дигидроантрацен в 62 раза быстрее бензола, а дигидроантрацен в тетра- [c.184]

    В УХИНе в течение ряда лет проводят исследования по гидроочистке фракции БТК, на основании которых сооружена Ясиновская опытно-промышленная гидрогени-зационная установка, находящаяся в стадии освоения. Установка имеет две последовательно работающие ступени гидрирования коксовым газом при давлении 50 ат. В первой ступени процесс осуществляется при 200— 250°С, а во второй — при 350—380°С. В обеих ступенях прим2няют алюмокобальтмолибденовый катализатор. Гидрообессеривание коксохимических продуктов протекает достаточно эффективно в присутствии алюмоко-бальтмолибденового катализатора под давлением водорода 20—40 ат и при 350—370°С. При гидрообессерива-нии стабилизированного сырья сернистые соединения (тиофен, бензтиофен) практически полностью подвергаю-ся гидрогенолизу. При гидрировании фракции БТК гидрогенизате возрастает содержание насыщенных углеводородов, а степень извлечения бессернистого бензола при ректификации не превышает 70% от потенциала ввиду образования азеотропной смеси бензола и насыщенных углеводородов. При гидрировании смеси БТК и нафталиновой фракции, кроме того, часть нафталина гидрируется в тетралин. Для уменьшения содержания насыщенных углеводородов в гидрогенизатах и увеличения выхода бензола и нафталина в настоящее время все чаще применяют процессы высокотемпературной гидрогенизации, позволяющие совмещать реакции очистки бензольных углеводородов от сернистых соединений с деструкцией насыщенных у1 леводородов в газ. Образующиеся гидрогенизаты состоят практически полностью из ароматических углеводородов, что упрощает выделение индивидуальных соединений. Так, при гидрогенизации фракции БТК под давлением 50 ат в интервале 575—600°С значительная часть ароматических углеводородов С7—Се подвергается гидродеалкилированию. В результате этого последующей однократной ректификацией гидрогенизатов фракции БТК может быть выделено до 80—85% бензола. [c.53]


Смотреть страницы где упоминается термин Гидрирование ароматических углеводородов ряда бензола: [c.55]    [c.105]    [c.105]    [c.187]    [c.93]    [c.441]    [c.305]    [c.380]    [c.61]    [c.62]    [c.61]    [c.62]    [c.33]    [c.182]    [c.130]   
Смотреть главы в:

Превращения углеводородов на металлсодержащих катализаторах -> Гидрирование ароматических углеводородов ряда бензола




ПОИСК





Смотрите так же термины и статьи:

Гидрирование ароматических углеводородо

Гидрирование бензола

Углеводороды ряда

бензола углеводородов



© 2025 chem21.info Реклама на сайте