Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коалесценция капли время

    В настоящее время разработано достаточное количество моделей коалесценции капли у поверхности раздела фаз жидкость— жидкость. Уравнения моделей выводятся на основе макроскопических балансов массы, силы и энергии и уравнений изменения микроскопических объемов жидкости и изменения поверхностей раздела фаз. Граничные условия и выражения для потока вместе с уравнениями состояния позволяют замкнуть систему уравнений для данной физической ситуации. Однако обобщенная полная система уравнений сложна для решения. Поэтому использование аппроксимирующих решений различной точности является наиболее распространенным методом. К сравнительно простым моделям можно отнести модели жесткой капли и жесткой поверхности раздела [32] и модели с учетом деформации капли и поверхности раздела с образованием углубления в центре капли [33, 34]. В [351 показано, что модели коалесценции, основанные на представлении однородной пленки, отделяющей каплю от поверхности, приводят к степенной зависимости времени коалесценции капли, пропорциональной пятой степени эквивалентного диаметра. Эти модели отрицают влияние разности давлений, возникающих вследствие искривления пленки, и поэтому дают завышенные значения показателя степени. [c.290]


    Время коалесценции капля—поверхность раздела фаз Тгр (и) зависит от объема капли и, физических свойств и высоте зоны плотной упаковки капель к — ку. Для его определения воспользуемся соотношением [c.302]

    Здесь т — время коалесценции капли То — время коалесценции без учета влияния толщины зоны плотной упаковки капель ДЯ о — поток дисперсной фазы. [c.308]

    С уменьшением диаметра капилляра, т. е. размера капли, время коалесценции возрастает экспоненциально, однако не превышает нескольких секунд. Диаметр наименьшего капилляра (0,425 мм) в 20—30 раз больше, чем средний размер пор нефтеносных песчаных коллекторов. Очевидно, что в условиях порового пространства капли будут иметь размеры, исчисляющиеся несколькими микронами, и время их коалесценции как с пленочной, так и со свобод- [c.101]

    При исследовании коалесценции капель воды в нефти наблюдали, как капля воды, выжатая в углеводородной жидкости из капилляра, падала на раздел нефть —вода и коалесцировала с ней. Коалесценция в керосине мало зависит от минерализации воды. С увеличением размера капли время коалесценции возрастает, с повышением температуры — убывает (рис. 44). Каплю пластовой воды образовывали с помощью микробюретки, нижний конец которой был погружен в слой нефти на глубину 10 мм. Капля образовывалась за 30—40 с. Объем ее во всех случаях был равен 0,05 смз. [c.102]

    По этой же методике была определена зависимость времени коалесценции капли этой же пластовой воды от времени формирования пограничного слоя на плоской границе раздела нефть — пластовая вода, нефть — дистиллированная вода и нефть — раствор неионогенного ПАВ (4411) различной концентрации (рис. 45). Наиболее сильно время формирования слоя влияет на коалесценцию при дистиллированной воде. При добавке в воду ПАВ свыше [c.102]

    Однако продолжительность стадии 5 составляет около 0,06— 0.08 с, поэтому при коалесценции основное время затрачивается на удаление пл нки. В этот период капля покоится на утончающейся пленке, прилегающей к поверхности. Этот период называется временем покоя. [c.259]

    Время коалесценции капля - поверхность раздела фаз (и) зависит от объема капли и, физических свойств и высоты зоны плотной упаковки капель ко - [c.175]

    Время коалесценции одиночной капли у поверхности раздела tq (и) может быть рассчитано по одному из эмпирических соотношений, определяющих зависимость времени коалесценции капли от физических свойств фаз и диаметра капли  [c.176]


    В процессе опыта фиксировали продолжительность жизни капли (время коалесценции) и величину межфазного натяжения нефть — вода. [c.249]

    Приведенные выше уравнения позволяют рассчитать средний размер капель, образующихся при истечении дисперсной фазы из отверстий тарелок или распределителя дисперсной фазы. Внутри колонны капли могут укрупняться вследствие коалесценции. Однако учесть количественно эффект коалесценции в настоящее время не представляется возможным. Поэтому приведенные уравнения применяют для расчета размеров капель в распылительных и тарельчатых экстракционных колоннах без учета коалесценции, которая в этих аппаратах обычно не очень интенсивна. [c.140]

    Математическая модель неустановившегося потока дисперсной фазы в слое насадки [7]. Рассмотрим объем колонны достаточно больших размеров, равномерно заполненный беспорядочно уложенной насадкой, в котором происходит случайное неориентированное движение струй или капель (пузырей) дисперсной фазы. Струи (капли, пузыри) рассматриваются как однородные изолированные макроэлементы, не подверженные эффектам слияния (коалесценции) и разбиения (редиспергирования). При построении вероятностно-статистической модели процесса будем полагать, что случайный характер движения дисперсной фазы в насадке подчиняется закономерностям непрерывного марковского процесса. Это значит, что вероятность перехода элемента дисперсной фазы, находящегося в момент времени в точке насадочного пространства, в точку М, достаточно близкую к точке М , за время А4, отсчитываемое от момента 1 , не зависит от состояния системы до момента 1 . [c.351]

    Один из фильтров, применяемых в настоящее время в промышленности, состоит из сложных круговых элементов, число которых зависит от поверхности. Газ поступает в верхнюю часть фильтра, проходит через фильтровальные элементы и отводится через трубки. Механические примеси задерживаются в фильтровальных элементах, мелкие капли жидкости за счет коалесценции укрупняются и могут быть легко отделены от газа с помощью коагулятора, который устанавливается после фильтра. Концевой фланец этого фильтра съемный, что позволяет в случае необходимости легко заменять элементы. Преимущество данного фильтра — большая удельная поверхность его. Величина поверхности фильтра зависит от материала, его плотности и конструкции фильтра. [c.95]

    Во время прохождения через реактор капли сталкиваются и даже коалесцируют. Прп слиянии двух капель содержимое их смешивается, а образовавшаяся в результате коалесценции большая капля может через некоторое время распасться на несколько мелких капель. Еслп объединение капель происходит с незначительной частотой, т. е. среднее время жизни капли значительно больше среднего времени пребывания ее в реакторе, то поведение каждой капли не зависит от поведения других капель, и система в целом является системой без смешения. [c.103]

    Наоборот, если капля может коалесцировать много раз во время ее пребывания в реакторе, все капли будут иметь один и тот же состав в предельном случае при бесконечно большой частоте коалесценции дисперсную фазу можно рассматривать как содержимое кубового реактора идеального перемешивания. [c.103]

    После добавления деэмульгатора бронирующие оболочки на каплях начинают разрушаться, и капли приобретают возможность коалесцировать друг с другом. В результате коалесценции какой-либо пары капель их суммарная поверхность уменьшается, появляется излишек деэмульгатора, который не может разместиться на этой новой поверхности и должен высвободиться. Пусть за время t исходная меж-фазная поверхность эмульсии уменьшится в q раз. Это означает, что количество деэмульгатора, которое будет захвачено эмульсией, будет также примерно в q раз меньше расчетного его количества, т. е. без учета процесса коалесценции. [c.76]

    Из приведенных данных видно, что наиболее значительное изменение X происходит на расстояниях, меньших радиуса капли. Следовательно, при сближении капель на расстояние, меньше радиуса капли, они могут потерять устойчивость и при незначительных внешних электрических полях. В то же время на столь близких расстояниях станет существенной сила притяжения капель, которая будет способствовать коалесценции дробящихся капель. [c.80]

    Данные таблицы полностью подтверждают, что неполное вымывание солей в предыдущих опытах обусловлено плохим разрушением бронирующих оболочек. Однако полностью соли вымываются только при смешении в электрическом поле. Причем эффект поля в этой серии опытов проявляется сильнее, чем при смешении без бензола (см. табл. 8.3). Для выяснения причины такого явления проведем качественный анализ процесса коалесценции в этой серии опытов. Так как в пробы перед смешением одновременно добавляли бензол и промывочную воду, процесс разрушения бронирующих оболочек проходил во время смешения. Пока оболочки на мелких каплях не разрушены бензолом, процесс вымывания солей идет так же, как и в опытах, результаты которых представлены на рис. 8.2, — вначале быстрое вымывание солей за счет идущей на транспортной стадии коалесценции капель пластовой и промывочной воды, затем процесс вымывания солей переходит на кинетическую стадию коалесценции, в результате чего его скорость резко уменьшается. Влияние бензола на начальном этапе смешения еще не сказывается. Затем оболочки начинают разрушаться, и скорость процесса вымывания солей опять должна возрасти. [c.151]


    С термодинамической точки зрения эмульсия есть двухфазная система с дисперсной фазой, содержащей микроскопические капли диаметром 0,1—100 мкм. Такие дисперсии никогда не являются полностью устойчивыми из-за того, что поверхность раздела между фазами обладает свободной энергией при соединении двух капель происходит уменьшение межфазной поверхности. Следовательно, коалесценция капель — это самопроизвольный процесс, в то время как эмульгирование требует затраты работы. Самопроизвольное эмульгирование наблюдается только в определенных системах, где две фазы предварительно взаимно ненасыщенны. Работа, необходимая для увеличения межфазной поверхности, черпается из свободной энергии смешения за счет массопереноса (см. гл. I). Истинно стабильные растворы, содержащие коллоидные мицеллы, не должны классифицироваться как эмульсии, так как они не имеют термодинамической фазы, которая может существовать отдельно. [c.75]

    Расчет стабильности эмульсии. Задавшись т. по формуле т., j = 1/ЛГ о, рассчитывают константу скорости коалесценции. Время полного распада эмульсии связано с К более сложной зависимостью, так как последние капли значительно крупнее начальных. Можно еще задаться определенным числом коалесценций ко времени X, тогда расчет следует вести по формуле (1). [c.440]

    Искусственные эмульсии обычно получают путем диспергирования — энергичного перемешивания смеси двух взаимно нерастворимых жидкостей. Образующиеся капли жидкостей двух видов в обеих фазах в размешиваемой системе растягиваются в струи. При достаточной степени растягивания (удлинения) капли приобретают неустойчивую форму и дробятся. Таким образом, возрастает дисперсность. С увеличением числа капель увеличивается и вероятность их обратного слияния, так что любое диспергирование приводит к установлению стационарного состояния, характеризующегося определенной, максимально возможной степенью дисперсности и определенным распределением капель по размерам. Это предельное состояние существенно зависит от наличия в смеси препятствующих коалесценции стабилизаторов, называемых эмульгаторами. Увеличение дисперсности в разбавленной эмульсии приводит к повышению ее устойчивости за счет снижения скорости седиментации. Например, молоко, подвергнутое дополнительному диспергированию, во время длительной транспортировки не образует сливок. Для получения эмульсий используют различные аппа- [c.240]

    Процессы коалесценции наиболее характерны для концентрированных эмульсий, где они в основном определяют время сушествования эмульсий до расслоения фаз. В высокодисперсных (разбавленных и концентрированных) эмульсиях с заметной скоростью может идти увеличение среднего размера капель вследствие протекания процессов изотермической перегонки. При одинаковой дисперсности изотермическая перегонка капель эмульсии идет значительно медленнее,, чем пузырьков пены, из-за небольших значений межфазной энергии и, следовательно, малой разности химических потенциалов вещества в каплях разного размера, а также часто и из-за меньшей взаимной растворимости жидкостей по сравнению с растворимостью газов в жидкости. [c.290]

    Было проведено исследование влияния на коалесценцию водорастворимого ПАВ (ОП-Ю). Добавка 0,05% его увеличивает время жизни капли в несколько раз. [c.102]

    Наряду с указанными исследованиями были проведены также исследования [9] методом скоростной микрокиносъемки с целью определения скорости коалесценции при соприкосновении глобул воды в эмульсии. Пределы увеличения микроскопа находились в интервале от 220 до 550. Киносъемка проводилась при скоростях 950, 750 и 1500 кадров в секунду. Чтобы во время съемки происходила интенсивная коалесценция капель, к эмульсии добавляли ПАВ и дополнительно применяли переменное электрическое поле с градиентом напряжения 500—1000 в/см, частотой от 500 до 20 000 гц после достижения рабочей скорости кинокамеры СКС-1М. Постоянное электрическое поле не применялось, так как капли начинали двигаться по направлению к электродам, что приводило к быстрому исчезновению их из поля зрения микроскопа. [c.105]

    При скорости съемки 600 кадров в секунду отмечено слияние в нефтяной эмульсии двух капель воды (d=0,055 и 0,070 мм) в момент подключения переменного электрического поля. К началу коалесценции (кадр, соответствующий 1/600 секунды) расстояние между ними становится менее 5 мк. Время коалесценции капель 1 и 2 при этом расстоянии не более 1/600 секунды, приобретение же каплей сферической формы занимает 1/100 секунды. При просмотре последующих кадров колебательных движений этой капли обнаружить не удалось (возможно, в связи с очень большой частотой их из-за малых размеров капли). Как видно, при подключении переменного электрического поля коалесцируют не все капли, а лишь некоторые из них. Аналогичные съемки с частотой 1500 кадров в секунду показали, что для капель размерами до 10 мк время достижения сферической формы при коалесценции составляет менее 1/200 секунды. [c.105]

    Процесс коалесценции капель состоит из двух этапов. Первый этап, транспортный, включает в себя сближение капель вплоть до касания поверхностей. Второй этап, кинетический, состоит в самой коалесценции, т. е. в слиянии капель в одну каплю. Предположим, что основное время приходится на транспортную стадию. Кроме того, будем считать, что каждое столкновение капель приводит к их коалесценции. Тогда основная задача состоит в определении частоты столкновения капель различного размера. [c.317]

    В заключение оценим время, по истечении которого процесс коалесценции капель в электрическом поле закончится. Для этого необходимо, чтобы средний радиус капель стал равным Ес который определяется формулой (13.24). Воспользуемся выражением (13.30) для изменения со временем радиуса капли в монодисперсной эмульсии. В итоге получим [c.335]

    Оценка коалесценции капля—поверхность раздела и капля— капля основывается на исследовании процесса утончения разделяющей пленки сплошной фазы. Однако время коалесценции может существенно отличаться от времени утончения пленки. Было обнаружено [36], что для систем с одним и тем же размером капель н одинаковым временем стенания пленки время коалесценции может существенно различаться. В этом случае возникает вопрос, может ли явление коалесценции интерпретироваться с помощью моделей утончения пленок сплошной фазы Ряд исследований показывают, что такая оценка обладает следующими недостатками 1371 а) не определена ладежность применения этих данных к реальным процессам, таким, как разделение эмульсий б) неизвестно, насколько применимы данные для систем с заданньш уровнем примесей. [c.291]

    Нельсен предположил, что время коалесценции капли зависит от концентрации ПАВ в соответствии с уравнением [c.267]

    В проводимых опытах наименьший диаметр капилляра (0,8 мм) безусловно больше, чем средний размер межноровых каналов нефтеносных песчаных коллекторов, составляющий для продуктивной части Туймазинского месторождения 7—12 мк, а для Арланского — 15—20 мк (судя по проницаемости образцов). Очевидно, капля, свободно перемещающаяся в пористой среде, должна иметь диаметр меньше указанных размеров. Следовательно, в условиях реальной пористой среды размер капель керосина будет меньше, чем в условиях опыта, и значит, время коалесценции капли в условиях пористой среды будет значительно больше. Экстраполируя представленные кривые в сторону малых капель, можно утверждать, что в условиях пористой среды время жизни капли в арланской воде будет больше, чем в туймазинской. [c.250]

    Для разделения фаз экстргкционные колонны имеют отстойные зоны. Обычно oiH примыкают к рабочей зоне колонны н располага отся выше (верхняя отстойная зона) и ниже ее (ниж яя отстойная зона). Отстойная зона для сплошной фазы (при диспергировании более легкой фазы находится внизу) служит для отделения уносимых ею мел их капель. Отстойная зона для дисперсной фазы (при диспергировании легкой фазы находится вверху) предназначена для того, чтобы капли могли коалесцировать перед выходом из аппарата. Время, необходимое для коалесценции капель, можно pa 4iraTb по уравнению [31  [c.141]

    Найденное время коалесценции является приближенным, так как размер капель в отстойной зоне вследствие коалесценции капель должен быть больше, чем в колонне (6,16 мм). Для расчета объема верхней отстойной зоны примем, что половина верхней отстойной зоны занята слоем чистого скоалесцировавшего бензола, а другая половина заполнена коалесцирующими каплями. Считая, что объемная доля бензола в коалесцирующей эмульсии составляет 80 %, получаем объем верхней отстойной зоны  [c.144]

    Начальная толщина пленки не имеет глубокого влияния, но критическое значение толщины должно быть известно, как граничное условие для оценки времени коалесценции [33]. Интерферомет-рические измерения критической толщины пленки дают значения от 400 до 1500 А [38]. Поэтому время коалесценции очень сильно зависит от ее колебаний. Число подвижных и неподвижных поверхностей раздела является устанавливаемым параметром, хотя в настоящее время нет надежного метода учета этого параметра в моделях. Однако использование модели параллель—диск для неравномерного утончения пленки на основе концепции неподвижности поверхностей оказалось успешным [36]. Показатель степени в зависимости от времени коалесценции от диаметра капли устанавливается при выборе той или иной модели. Таким образом, даже качественный учет основных факторов, влияющих на время коалесценции, позволяет корректно описать явление в реальных условиях. Определение параметров, очевидно, должно проводиться по экспериментальным данным. [c.292]

    Намного важнее и чаш,е всего встречается несамопроизвольное образование эмульсий в присутствии эмульгаторов. Эти эмульсии схожи с пенами, и причины их устойчивости следует искать глубже. Довольно широкое распространение получили идеи, подобные гипотезе Плато в отношении устойчивости пен, о роли механической прочности тонких Ьлоев жидкости, разделяющих капли дисперсной фазы в концентрированных эмульсиях. Понятие о механической прочности тонких слоев широко используется в работах Ребиндера и его школы. В простейшем случае, когда речь идет о повышении вязкости в пленке за счет введения в нее эмульгаторов, проблема сводится, как и в случае пен, к механизму замедленного утончения эмульсионных пленок, В эмульсиях оно обусловлено теми же факторами, что и в пенах. Мы уже убедились, что проверка этого механизма представляет собой довольно трудную задачу. Относительно этого вопроса поед еще трудно утверждать что-либо определенное, так как отсутствуют систематические модельные исследования процессов утончения эмульсионных пленок. Если, однако, исходить из аналогии с пенами, а также из имеющихся для них данных, то можно предположить, что указанный механизм не является решающим. Напротив, если под механической прочностью подразумевается вся совокупность механических свойств (в том числе и еще не уточненных механических свойств адсорбционного монослоя), которые противодействуют разрушению тонкого слоя, то, исходя опять же из аналогии с пенами и относящихся к ним априорных выводов, можно предположить, что скорость коалесценции в эмульсиях также регулируется подобными факторами. К сожалению, отсутствие данных по механизму утончения и разрушения эмульсионных пленок в настоящее время не позволяет идти дальше этих весьма неопределенных предположений. [c.244]

    Очистка нефтепродуктов в электрическом поле применяется недостаточно широко, хотя высокая эффективность этого метода доказана [33, 36]. Развитие теории очистки жидких сред от загрязнений явно отстает от практики в настоящее время созданы электроочистители разнообразных конструкций. Механизм удаления частиц загрязнений в электрическом поле обусловлен, вероятнее всего, наличием двойного электрического слоя на поверхности частиц, состоящих, как известно, из высокополярных молекул и их ассоциатов. В электрическом поле такие частицы неизбежно движутся к электродам. Механизм коалесценции воды в электрическом поле объясняется перераспределением нейтральных зарядов эмульгированных капель воды в диполи, которые ориентируются вдоль силовых линий поля, притягиваются друг к другу и агрегируются. Достаточно крупные капли воды выпадают в отстойную зону. Процессу коагуляции микрозагрязнений и коалесценции воды способствует межмолекулярное притяжение, силы которого увеличиваются при сближении капель воды и частиц загрязнений  [c.277]

    Устойчивость эмульсий уменьшается в ультразвуковом поле. Капли воды коалесцируют в поле высокочастотных колебаний. Вибрационный дегидратор представляет собой камеру с ультразвуковым генератором. При воздействии ультразвуковых колебаний с частотой до 30 кГц время отстаивания эмульсионной воды уменьшается в 6—8 раз. Следует отметить, что эффекты коалесценции микрокапель воды наблюдаются только при относительно невысокой мощности ультразвукового поля — не более 10 кВт/м. При слишком большой мощности ультразвукового поля происходит диспергирование капель воды в не епродуктах. Коалесценция наблюдается только в том случае, если колебания капель имеют амплитуду, достаточную для их соприкосновения. Амплитуда должна увеличиваться с уменьшением концентрации капель воды. Поэтому применение ультразвукового метода ограничивается оптимальными условиями. [c.285]

    Для разделения фаз экстракционные колонны имеют отстойные зоны, которые обычно примыкают к рабочей зоне колонны и располагаются выше и ниже се (верхняя и нижняя отстойные зоны). Отстойная зона для сплошной фаз111 (при диспергировании более легкой фазТ) находится внизу) служит для отделения уносимых ею мелких капель. Отстойная зона для дисперсной фазы (npii диспергировании легкой фазы находится вверху) предназначена для toi o, чтобы капли могли коалесцировать перед, выходом из аппарата. Время, необходимое для коалесценции капель, можно рассчитать по уравнению [ 111  [c.261]

    Основным принципом работы термохимических отстойных аппаратов является подогрев эмульсии, что уменьшает вязкость нефти и тем самым увеличивает скорость осаждения капель воды. Добавление в эмульсию химических реагентов — деэмульгаторов способствует дестабилизации эмульсии и увеличению скорости коалесценции капель. Термохимические отстойники по конструкции мало чем отличаются от гравитационных газовых сепараторов. Отстойники отличаются друг от друга геометрией емкости, конструкцией вводных и выводных устройств, а также некоторыми особенностями организации гидродинамического режима внутри отстойника. В настоящее время применяют в основном горизонтальные отстойные аппараты с отношением длины к диаметру, равным примерно шести. Отличительной особенностью отстойников является использование специальных устройств ввода и вывода эмульсии, называемых маточниками, предназначение которых состоит в равномерном распределении эмульсии по сечению аппарата. Распределители для ввода эмульсии в аппараты могут различаться. Это отличие зависит от того, подается эмульсия под слой дренажной воды или прямо в нефтяную фазу. Если водопефтяная эмульсия подается под слой дренажной воды, которая собирается в нижней части аппарата, то для ускорения разрушения струек нефти с каплями воды, вытекающих из отверстий трубчатого маточника, отверстия в маточниках делают в нижней или боковой части. Для равномерного распределения эмульсии по сечению аппарата трубчатые маточники устанавливают по высоте аппарата. Такое расположение пе всегда удобно. Другим устройством является маточник в виде короба, открытого снизу, с отверстиями в верхней части. Эти короба устанавливают па некотором расстоянии друг от друга на двух распределительных трубах, отверстия в которых находятся прямо под коробами. В коробах происходит самопроизвольное разделение нефти и воды. Нефть вытекает сверху из отверстий короба, а вода остается в нижней части. При подаче эмульсии в слой нефти используют трубчатые маточники с отверстиями в верхней части. При этом возникает проблема распределения отверстий по длине трубы для обеспечения равномерного расхода жидкости. Неравномерный расход приводит к нежелательному перемешиванию эмульсии в аппарате. [c.30]

    Важным технологическим процессом подготовки нефти к транспорту является обезвоживание нефти, т. е. удаление из нефти воды. Осуществляется этот процесс в специальных емкостях (отстойниках), в которых капли воды отделяются от нефти путем гравитационной седиментации. Размер этих емкостей должен обеспечить осаждение из нефти достаточно мелких капель. Размер капель, как правило, мал, так что скорость их осаждения подчиняется закону Стокса V = 2Ap .RV9 le, где Ар — разность плотностей фаз, — динамическая вязкость сплошной фазы. Для характерных значений Ар = 200 кг/м , 1 = 10 Па с, / = 10 мкм имеем [/=0,5 10" м/с. Это значит, что из слоя водонефтяной эмульсии высотой 1 м вьшадут все капли радиусом более 10 мкм за время I - 2 10 с = 50 ч. Для Е = 100 мкм это время составит I - 0,5 ч. Таким образом, если удастся увеличить радиус капель воды в эмульсии в 10 раз (например, от 10 до 100 мкм), то время разделения эмульсии уменьшится на два порядка, а следовательно, во столько же раз уменьшится объем (длина) отстойника. Столь большое увеличение размера капель за относительно неболыпое время можно осуществить, поместив эмульсию в однородное внешнее электрическое поле. Для определения времени, необходимого для укрупнения капель воды в нужное число раз, следует определить скорость коалесценции капель, т. е. исследовать динамику процесса укрупнения капель в эмульсии. [c.244]


Смотреть страницы где упоминается термин Коалесценция капли время: [c.33]    [c.43]    [c.177]    [c.252]    [c.294]    [c.372]    [c.98]    [c.102]    [c.107]    [c.372]   
Последние достижения в области жидкостной экстракции (1974) -- [ c.260 ]




ПОИСК





Смотрите так же термины и статьи:

Капли

Коалесценция



© 2025 chem21.info Реклама на сайте