Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кекуле молекулярная

    Неверное предположение заключается в том, что молекула бензола описывается структурой Кекуле. В гл. 13 было установлено, что структура Кекуле не позволяет объяснить равную длину всех шести связей между атомами углерода в бензольном цикле и что удовлетворительное описание химической связи в этой молекуле должно основываться на теории делокализованных молекулярных орбиталей. В гл. 21 мы познакомимся с большим классом ароматических соединений, в которых имеются делокализованные электроны. Во всех случаях делокализация обусловливает повышение устойчивости молекулы, так как энергия делокализованных электронов понижается. Метод энергий связей позволяет оценивать величину этой стабилизации на основе измерений теплот образования ароматических соединений. [c.34]


    Так как валентный штрих в методе локализованных пар сопоставляется с локализованной парой электронов, то приведенным двум формулам Кекуле соответствуют по меньшей мере два разных распределения электронной плотности. Но для молекулы в стационарном состоянии существует одно-единственное распределение. Поэтому в методе валентных связей реальное распределение электронной плотности молекулы бензола надо представить как наложение по меньшей мере двух распределений локализованных пар, а для более точной картины—пяти распределений. Это значительно усложняет метод, не облегчая восприятия реальности. Для более сложных молекул число используемых при их описании валентных схем стремительно возрастает. Метод полностью утрачивает преимущества наглядности, а в расчете молекулярных свойств становится менее удобным, чем метод молекулярных орбиталей. [c.58]

    Хотя в этом продукте содержание углерода снизилось по сравнению с исходным цианамидом, мы видим в нем типичную органическую молекулу. Не количество углерода определяет неорганическую или органическую природу молекулы, а ее структурная организация. Лавуазье и Берцелиус интуитивно почувствовали это, назвав органическую химию химией сложных радикалов. Чтобы исследовать эти радикалы, вникнуть в их строение, Гмелин и Кекуле вынуждены были отказаться от такого определения и стали рассматривать органическую химию чисто аналитически как химию углерода. Шорлеммер и Бутлеров, основываясь на принципе строения, подчеркнули, что здесь дело не в одном каком-либо элементе, а в высокой организации молекулярной структуры, и определили органическую химию как химию углеводородов и их производных. [c.102]

    Энергия резонанса. Установлено, что освобождающаяся при окислении бензола до диоксида углерода и воды энергия много меньше вычисленной для горения гипотетического циклогекса-1,3,5-триена (другими словами, бензола Кекуле ). Дефицит энергии в 150 кДж/моль может быть отнесен на счет энергии, высвобождающейся при образовании из трех изолированных двойных связей циклических делокализованных молекулярных орбиталей, описанных выше. Эта выделившаяся энергия, так называемая энергия резонанса, обусловливает отсутствие определенного типа химического поведения, характерного для ненасыщенной молекулы. Любая реакция, в результате которой происходит разрушение циклических молекулярных орбиталей, требует возврата выделившихся 150 кДж/моль и является вследствие этого энергетически невыгодной. [c.49]

    Вычислите молекулярное отношение продуктов реакции, образуюш,ихся при озонировании 1,2,4-триметилбензола, основываясь на теории резонанса и исходя иэ двух возможных формул Кекуле. [c.130]


    Молекулярная формула. Число изомеров. Структура Кекуле [c.302]

    Кекуле систематически использовал в органической химии органогенов введенное английским ученым Франкландом понятие валентности (сам термин введен А. В, Гофманом), установленное им путем исследования состава и молекулярного веса летучих металлоорганических соединений. В 1857 г. Кекуле распространил понятие валентности и на сам углерод. Признание четырехвалентности углерода вскоре привело Кекуле к необходимости принять связь углеродных атомов между собой. Например, формула этана записывалась следующим образом  [c.16]

    На основании молекулярных рефракций различных производных Брюль [9] установил, что структура пиразинового кольца скорее относится к типу структур Кекуле, чем к типу структур Дьюара. [c.313]

    Электрофильные атаки должны быть направлены на участки, обладающие в отсутствие заместителей наиболее высокой электронной плотностью, т. е. на такие положения в цикле, которые, как правило, уже в статическом состоянии характеризуются (как видно из молекулярных диаграмм) повышенными индексами свободной валентности (см. стр. 51). Действительно, указанные выше точки атаки хорошо соответствуют участкам, где эти индексы имеют максимальное значение. С другой стороны, возникновение промежуточно образующихся дипольных форм, преимущественно п-хиноидного типа, происходит тем легче, чем больше в системе колец типа Кекуле, т. е. при максимальном резонансе. Так, для нафталина структура IV, доступная для атак в а-положение, более вероятна, чем структура V, благоприятствующая атакам в -положение. [c.170]

    Кекуле, таким образом, решил лишь часть проблемы, связав молекулярную формулу бензола с его структурной формулой, но не объяснил, однако, отмеченные выше особенности химического поведения бензола. [c.382]

    Молекулярная рефракция бензола дает небольшую депрессию в — 0,17 по сравнению с вычисленной для трех простых и трех двойных связей. Поэтому бензольное ядро как таковое не может содержать конъюгированных связей С = С, и молекулярная рефракция говорит против формулы Кекуле так же, как и другие физические свойства. [c.76]

    Одна из молекул реагента оказывается таким образом как бы катализатором реакции (ор. Кекуле действие масс и катализ отличаются друг от друга только тем, что при действии масс каталитически действует молекула одного рода с распадающейся, а при катализе они принадлежат разным веществам [77, стр. 17]). Отсюда становится возможным переход к молекулярным комплексам, образование которых связано с пренебрежимо малой энергией активации [90]. [c.322]

    Молекулярная рефракция бензола и его гомологов довольно точно соответствует вычисляемой по аддитивной схеме согласно формуле Кекуле, хотя наличие трех сопряженных двойных связей в открытой цепи приводит к весьма высоким экзальтациям. [c.74]

    Прежде значение аддитивной схемы переоценивалось и часто делались попытки использовать рефрактометрию для прямых заключений о строении самых разнообразных соединений, когда другие методы еще не давали определенных результатов. Так, например, совпадение молекулярной рефракции бензола с величиной, рассчитанной с употреблением трех инкрементов двойной связи, установленных для этиленовых соединений, считалось доводом в пользу формулы Кекуле  [c.87]

    Этот пример сыграл известную роль в истории исследования ароматических соединений и долгое время приводился в учебниках в качестве иллюстраций определения строения рефрактометрическим путем. После открытия особых свойств сопряженных двойных связей и явления экзальтации совпадение рефракции бензола с аддитивной величиной иногда пытались трактовать и как довод против формулы Кекуле. С современной точки зрения сопоставление молекулярной рефракции бензола и моно-этиленовых углеводородов вообще не дает оснований для заключений о строении бензола, поскольку ароматические соединения содержат особые типы связей, не встречающиеся у этиленовых углеводородов. [c.87]

    Если в молекуле имеется несколько изолированных двойных связей,—экзальтации не наблюдается. По-видимому, случайно молекулярная рефракция бензола равна молекулярной рефракции, рассчитанной по формуле Кекуле при замещении же водорода в бензоле метильной группой происходит нарушение симметрии бензола, и у толуола появляется небольшая экзальтация -1-0,14. [c.114]

    С другой стороны, применение локализованных орбиталей, вероятно, не столь эффективно при расчете типичных делокализованных систем, таких, как я-электроны в ароматических молекулах. Тем не менее и в этих случаях с их помощью можно получить интересные сведения о свойствах молекул. Вполне возможно, что они помогут установить более тесное соответствие между теорией молекулярных орбиталей и таким понятием классической химии, как структуры Кекуле. Вероятно [12], в таких молекулах имеется, вообще говоря, несколько систем локализованных орбиталей, т. е. собственная энергия имеет несколько относительных максимумов. Каждая система локализованных орбиталей соответствует одной из возможных структур Кекуле, в которой каждая двойная связь соответствует одной локализованной орбитали, которая в основном сосредоточена в этой области. Следовательно, такие локализованные ортогональные молекулярные орбитали, соответствующие структурам Кекуле, являются возможным способом интерпретации волновых функций самосогласованного поля. Такой результат локализации был найден для бензола, хотя в этом случае две взаимно ортогональные локализованные молекулярные орбитали можно выбрать самыми разнообразными способами [13]. Эти результаты показывают, что мезомерию струк- [c.108]


    Используемые в органической химии методы анализа и синтеза позволяют однозначно определить порядок связывания атомов в молекуле (исключениями являются лишь случаи таутомерии и перегруппировок). Под порядком связывания понимают взаимное геометрическое расположение соседних атомов в молекуле и пространственно-статическую модель молекулы в целом. В классической структурной теории эти эмпирические данные связывались с гипотетическими представлениями о валентности, например, с высказанными Кекуле. Все это сохранило свое значение и в настоящее время молекулярные модели структурной теории дают правильное описание атомных скелетов молекул. Однако, в соответствии с представлениями об атоме как совокупности ядра и оболочки, оказалось необходи.мым дополнить указан- [c.46]

    Теории валентности и стереохимия развивались в прошлом столетии в очень тесной связи, так что достижения одной обычно были результатом успехов другой. В 1852 г. Фрэнкленд предложил концепцию валентности и показал, что элементы при образовании соединений реагируют с определенными количествами других элементов, и эти количества теперь называют эктшвалентными. Кекуле в 1858 г. и Кольбе в 1859 г. расширили представление о валентности и постулировали, что атом углерода четырехвалентен. В 1858 г. Кекуле предположил, что атомы углерода соединяются друг с другом в неограниченном числе, образуя цепи в том же году Купер ввел концепцию валентной связи и нарисовал первые структурные формулы. Термин химическое строе-ние ввел в 1861 г. Бутлеров, который отметил важность написания простейших формул соединений, показывающих, как соединены атомы в молекулах. Он также установил, что свойства соединений определяются их молекулярным строением, п если известно строение, то можно предсказать свойства. Однако только в 1874 г. был сделан первый основной шаг к наглядному представлению молекулярного строения в трех измерениях. В этом же году Вант-Гофф и ле Бель независимо друг от друга постулировали тетраэдрическое расположение четырех связей атома углерода и таким образом дали возможность классической органической стереохимии по крайней мере. на двадцать лет опередить неорганическую стереохимию. [c.191]

    Теперь, зная молекулярные орбитали и их энергию, можно попытаться объяснить особенности ароматических молекул. Первая из них — устойчивость молекул, их неактивность в реакциях присоединения, несмотря на непредельный характер бензола и его производных. В бензоле нет локализованных двухцентровых этиленовых связей, которые ответственны за активность олефинов в реакциях присоединения и которые предполагались в гипотетическом бензоле Кекуле. Электроны я-связей занимают делокализованные шестицентровые орбитали, охватывающие все бензольное коль,цо. При этом разрыхляющие я-орбитали [c.229]

    Для понимания ситуации важно отметить еще одно существенное обстоятельство. В конце бО-х и начале 70-х годов учение А. Кекуле о постоянной валентности подверглось серьезной критике. Открытие периодического закона (1869), изучение природы атомных и молекулярных соединений, развитие учения о взаимном влиянии атомов — все это, как и многое другое, утверждало в химип представления о переменной валептности. [c.221]

    Молекулярно-кинетическое истолкование химических процессов можно встретить в трудах А. М. Бутлерова, А. Кекуле, Н. Н. Бекетова, Л. Мейера. В 1867 г. Л. Пфаундлер применил кинетическую теорию газов к явлениям химического равновесия и к объяснению диссоциации химических соединений. Он развил теорию одновременно совершающихся обратимых реакций как следствие непрерывных изменений состояния молекул . На основе молекулярно-кинетического учения ему удалось показать тесную связь между такими категориями химических равновесий, как процесс диссоциации и реакции двойного обмена. При рассмотрении многих физико-химических явлений и при выводе формул ученые использовали неверную гипотезу, что все молекулы идентичны со всех точек зрения. Между тем, чтобы глубже проникнуть в сущность механизма явления, оказалось необходимым ввести новое цонятие, которое позволило бы более точно и логично подойти к физико-химическому явлению. Эту новую мысль развили Р. Клаузиус, Д. К. Максвелл и Л. Больцман в своих трудах по статистической механике. Новое заключалось в том, что не все мо- [c.329]

    Бензол — простейший представитель класса ароматических углеводородов (аренов). Он представляет собой бесцветную жидкость с характерным запахом. Долгое время строение бензола было предметом споров и дискуссий. После 1834 г., когда была установлена молекулярная формула СеНе, предлагались ненасыщенные структуры, например СН2 = С = СН—СН = С = СН2. В действительности, бензол оказался гораздо менее реакционноспособным соединением, чем алкены. 1865 г. Кекуле предложил циклическую гексатриеновую структуру [c.601]

    Химики используют в своих рассуждениях мысленные образы, структурные формулы (СФ), структуры Кекуле, диаграммы ORTEP. Однако в меньшей мере используется основная математическая структура этих конструкций. Нашей целью будет разработка алгебраических и топологических характеристик такой структуры первоначально для квантовой химии (молекулы, стадии молекулярных реакций), затем в известной степени для химической кинетики и динамики (нахождение возможных путей, механизмов, определение их стационарных состояний, устойчивости, колебаний). Для квантовой химии, т. е. микрохимии , будут разработаны правила с целью получения обычным путем основных электронных характеристик молекул [система уровней молекулярных орбиталей (МО), реакционная способность, устойчивость к искажениям] и в некоторых математических классах непосредственно из структурных формул или диаграмм ORTEP. На макрохимическом уровне, т. е. при нахождении всех математически возможных путей синтеза, механизмов, при разработке правил стадия/соединение, связывающих число реагентов, продуктов, интермедиатов, катализаторов, автокатализаторов с числом элементарных реакционных стадий в химической смеси и затем с динамическими неустойчивостями, будут использоваться представления иного типа — реакционные схемы, являющиеся графами с двумя типами линий и двумя типами вершин [I]. [c.73]

    Очевидно, в этом случае могут возникать перекрывания атомов I . 2, 3 4, 5 б или 1 б, 5 4, 3 2, приводящие к структурам соответствующим структурам Кекуле Vila и VII6. В действительности же любая из р-орбиталей может перекрываться в обоих направлениях, в результате чего BoaHmiaror делокализо ванные молекулярные орбитали (ср. бутадиен). Шесть атомных р-орбиталей могут дать шесть молекулярных орбиталей (п атомных орбиталей всегда приводят к п молекулярным орбиталям), энергетические уровни которых схематически могут быть выражены следующей схемой  [c.30]

    Внезапное появление бакибола на химической сцене произведет, по-видимому, такой же драматический эффект на дальнейшее развитие органической химии, какой вызвало открьггае бензола Майклом Фарадеем (1825). Но между этими открытиями есть существенная разница после открытия бензола прошло девять лет до установления его молекулярной формулы (Митчер-лих,1834), еще 31 год пришлось ждать понимания его структуры (Кекуле, 1865) и несколько десятилетий — развития химии в этой области. В случае бакибола и родственных ему кластеров арсенат современной науки позволил пройти аналогичную дистанцию всего за несколько лет. [c.401]

    Все это особенно заметно при сопоставлении данных о молекулярной рефракции соединений обоих рядов. Известно, что по самому своему существу молекулярная рефракция дает (19) непосредственно меру суммарной поляризуемости всех электронов данной молекулы , или в рефрактометрических исследованиях мы имеем средство для выяснения жесткости -с которой электроны удерживаются в молекулах . Жесткость связей электронов в молекулах бензола и фурана проявляется, в частности, в отсутствии у этих молекул молекулярных экзальтаций, характерных для систем с конъюгированньми двойными связями, к которым их можно отнести на основании общепринятых для них структурных формул. Известна что бензол имеет незначительную депрессию, выявляющуюся при сопоставлении экспериментально найденной молекулярной рефракции с вычисленной из атомных рефракций и инкрементов, исходя кз формулы Кекуле (— 0,17) фуран обнаруживает более значительную депрессию (—0,761) (205). [c.27]

    Несмотря на то что бензол часто описывают единственной структурой Кекуле (циклогексатрпен), его химические свойства очень сильно отличаются от тех, которые можно ожидать для соединения с такой формулой. Выше было показано, что в рамках теории молекулярных орбиталей основному состоянию бензола соответствуют шесть л-электронов, занимающих три связывающие орбитали, причем электроны делокализованы по всему кольцу, и именно делокализация л-электронов (точнее говоря, нелокализуемость, ср. гл. 8) обусловливает характерные свойства этой молекулы. Ясно, что имеется бесконечное число возможных циклических молекул с эмпирической формулой СгАгИг 2к равно числу атомов С в кольце) со структурами Кекуле, содержащими чередующиеся двойные и простые связи (например, циклобутадиен, циклооктатетраен и т. д.). Хюккелевский секулярный детерминант для циклических молекул такого рода в предположении, что все связи имеют одинаковую длину, равен [c.333]

    Молекулярной формуле gHe отвечают также и другие структуры, например II—V. Из всех этих структур структура Кекуле была наиболее удовлетворительной доводы в ее пользу основаны на уже знакомой нам аргументации о числе изомеров (разд. 3.2). [c.302]

    Помимо замещенных бензолов были открыты или синтезированы многие другие соединения, которые соответствовали по классификации ароматическим, но были более ненасыщенными. Ряд таких соединений был выделен из каменноугольной смолы [5] ранее были охарактеризованы нафталин (С5Н4), антрацен (С7Н5) и фенантрен (С7Н5). В эмпирических формулах таких соединений прослеживается непрерывное снижение содержания водорода, а на примере двух последних соединений — возможность структурной изомерии. Однако до конца 1850-х годов, когда было четко сформулировано понятие молекулярной массы [6] и была развита концепция четырехвалентности углерода, нельзя было достигнуть больших успехов на пути развития представлений об ароматичности. Формулы Купера и Кекуле позволяли изображать структуры алифатических соединений и объясняли структурную изомерию, однако ненасыщенность оставалась непонятной. После того как [c.282]

    Электроотрицательный атом азота способствует индуктивной поляризации молекулы пиридина в результате смещения электронной плотности преимущественно по ст-связям. Кроме того, атом азота определяет стабильность поляризованных канонических структур, в которых он отрицательно заряжен — структуры 8, 9 и 10. Эти структуры вместе со структурами 6 и 7, которые полностью аналогичны формулам Кекуле бензола, вносят вклад в строение молекулы пиридина. Полязированные канонические структуры подразумевают также постоянно присутствующую в молекуле пиридина поляризацию системы я-электронов (при рассмотрении с позиций более строгого метода молекулярных орбиталей это связано с относительным различием в орбитальных коэффициентах ВЗМО и НСМО). [c.18]

    Строение бензола, простейшая формула которого СН, а молекулярная - СвНб, долгое время оставалось загадкой для химиков. Химические свойства бензола свидетельствуют о том, что при явной ненасыщенности связей он не склонен к реакциям присоединения, группировка из шести атомов углерода в реакциях обычно сохраняется и все атомы углерода в ней равноценны. Первым удовлетворительную структуру молекулы бензола предложил А. Кекуле. Он представил ее как циклическую систему с чередующимися одинарными и двойными связями  [c.406]

    Вычисленная разность между энергиями структуры Кекуле и соответствующей волновой функции в виде линейной комбинации называется энергией резонанса для данной отдельной волновой функции. Очевидно, что разность в 37 ккал1моль между теплотой атомизации для структуры Кекуле и истинным значением этой величины для бензола можно определить как экспериментальное значение такой энергии. На языке метода молекулярных орбит эта разность в 37 ккал1моль называется энергией делокализации и представляет собой разность между энергиями молекулы со структурой Кекуле и локализованными электронами и истинной молекулы со всеми шестью электронами на делокализованных орбитах. [c.127]


Смотреть страницы где упоминается термин Кекуле молекулярная: [c.324]    [c.305]    [c.317]    [c.16]    [c.36]    [c.47]    [c.372]    [c.283]    [c.38]    [c.109]    [c.187]   
Химические приложения топологии и теории графов (1987) -- [ c.54 , c.58 ]




ПОИСК





Смотрите так же термины и статьи:

Кекул

Кекуле

Молекулярная формула. Число изомеров. Структура Кекуле



© 2025 chem21.info Реклама на сайте