Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Органические кислоты регенерация

    Технологическая схема процесса представлена на рис, 2.47. Сырье промывается раствором щелочи в колонне 1 для удаления сероводорода и органических кислот с целью продления срока службы катализатора, после чего поступает в экстрактор 2, где из него раствором катализатора мерокс экстрагируются низкомолекулярные меркаптаны. Раствор мерокс из экстрактора 2 подается в реактор 4, где происходит каталитическое окисление меркаптанов в дисульфиды кислородом воздуха с одновременной регенерацией катализатора. Смесь из реактора 4 проходит сепараторы 5 и 6 для отделения избытка воздуха и дисульфидов, после чего регенерированный раствор мерокс возвращается в реактор 2. Очищенное от низкомолекулярных меркаптанов сырье поступает из сепаратора щелочи 3 в реактор 7 для перевода в дисульфиды высокомолекулярных меркаптанов, не подвергшихся экстракции в экстракторе 2 и окислению в реакторе 4. В реакторе 7 сырье взаимодействует с воздухом и дополнительным количеством раствора мерокс . Смесь из реактора 7 поступает в сепаратор 8, где разделяются очищенный продукт и циркулирующий раствор мерокс . Остающиеся в очищенных топливах высокомолекулярные дисульфиды не ухудшают их эксплуатационных свойств. [c.194]


    Для осушки газа используют растворы диэтиленгликоля концентрации 90—99%, у насыщенного влагой раствора концентрация составляет 60—70%. а после регенерации его концентрация должна быть не ниже 90% [24]. С повышением температуры скорость коррозии углеродистой стали в растворах ДЭГ увеличивается, достигает максимума при температуре кипения, равной 100—120°С, а затем уменьшается. При этом скорость коррозии в паровой фазе растворов ДЭГ выше скорости коррозии в жидкой фазе, что связано с переходом в нее легколетучих органических кислот, образующихся в результате окисления ДЭГ. С повышением концентрации ДЭГ скорость коррозии стали возрастает, достигает максимума при 60%, а затем опять уменьшается. [c.173]

    Допустимая степень насыщения раствора кислыми газами в зависимости от количества очищаемого газа и концентрации МЭА в поглотительном растворе показана на рис. V. 1. В присутствии кислорода моноэтаноламин окисляется с выделением органических кислот. Кислород обычно проникает в систему с очищаемым газом, через негерметичные емкости. хранения моноэта-ноламнпа, сальники насосов. При очистке газа от сероводорода контакт раствора с кислородом приводит к образованию тиосульфата амина, который не разлагается при регенерации и накапливается в растворе, вызывая ухудшения свойств раствора. [c.175]

    Имеется опыт ионообменной очистки при регенерации трансформаторных масел с целью удаления из них органических кислот, образовавшихся в процессе эксплуатации масел [45]. Для этого используют аниониты [c.125]

    Экономически целесообразна электрохимическая регенерация хромовой кислоты, используемой в качестве окислителя в органическом синтезе. Регенерация производится из стоков, содержащих трехвалентный хром. Электролизу подвергают сернокислые растворы, содержащие трехвалентный хром. На аноде из двуокиси свинца при 30—50°С и плотности тока 300 А/м происходит окисление трехвалентного хрома [c.213]

    Даиный метод может обеспечить достижение хороших результатов только при условии возможно полного удаления из масла образующихся солей органических кислот и при очень тщательном проведении всего технологического процесса регенерации. [c.111]

    Если адсорбированные продукты являются органическими кислотами, фенолами или их производными, то регенерацию ведут экстракцией горячим раствором щелочи, затем колонну отмывают горячей водой и 1—2%-ным раствором кислоты (обычно серной) от избытка щелочи. Раствор соли органической кислоты или фенола подкисляют и выделяют органические компоненты в сепараторе, если они плохо растворимы в воде, или азеотропной отгонкой, или экстракцией, если растворимость извлеченных нз угля продуктов высока. [c.271]


    Регенерация колонки зависит от ее "предыстории", т.е. от того, какую работу на этой колонке выполняли и к какой работе колонку необходимо подготовить. При анализе углеводородов, когда в качестве элюента использовался осушенный гексан, ухудшение разделения или воспроизводимости вызвано накоплением воды на адсорбенте. Регенерация достигается промывкой колонки осушенным гексаном в течение суток. Если свойства колонки не восстановились, ее необходимо заменить другой. Использованная колонка пригодна для проведения других анализов. При применении элюентов, содержащих органическую кислоту или амин, силикагель адсорбционно модифицируется, и использовать колонку для других анализов нежелательно попытки регенерации колонки к первоначальному состоянию дороги, длительны и не гарантируют успеха. [c.61]

    Органические кислоты (нафтеновые и высшие жирного ряда) образуют в абсорбере аминовые мыла, что вызывает вспенивание раствора и усиливает унос раствора газовым потоком. Бензин хорошо растворяется в МЭА и значительно хуже в ДЭА, при регенерации раствора бензин выделяется с газами. [c.249]

    В тех случаях, когда щелочная обработка масла не связана с сернокислотной очисткой (обычно так и бывает в практике регенерации), щелочь взаимодействует лишь с органическими кислотами — продуктами старения масла. В результате взаимодействия [c.102]

    Для уменьшения в этиленгликоле содержаиия железа и других металлов, а также слабых органических кислот его пропускают через сильнокислотный Н-катионит (например, сульфированный полистирол, модифицированный дивинилбензолом). В результате такой очистки содержание железа снижается в 10 раз (с 8-10 до 7-10- %), золы в 5—10 раз (с 0,0005-0,001 до 0,0001%) и кислотность в 1,5 раза (с 0,0035 до 0,0021%). Регенерацию смолы проводят после отложения на ней 3—4% железа 20%-нон серной кислотой и последующей промывкой обессоленной водой [102]. [c.90]

    Регенерация органических кислот [c.103]

    Метод ионитовых мембран может быть весьма эффективно использован для разделения ионов с различной подвижностью, для разделения органических кислот, регенераци итравильных растворов, концентрирования и удаления радиоактивных примесей из сточных вод, очистки диффузионного сока сахарной свеклы, для аналитических целей, для изучения комплексных соединений и т. д. Ионитовые мембраны представляют интерес для создания химических источников электрического тока. [c.451]

    Щелочную очистку мож1но проводить после кислотной для нейтрализации оставшихся в масле кислотных соединений (сульфосоединений, нафтеновых кислот, остатков серной кислоты), а также в качестве самостоятельного процесса при регенерации отработанных масел. В последнем случае щелочь взаимодействует главным образом с органическими кислотами, содержащимися в масле или образовавшимися в результате его старения,— с нафтеновыми, ди- и оксикарбоновыми и др. В результате взаимодействия щелочи со всеми перечисленными веществами образуются водорастворимые нат- [c.115]

    Серьезные трудности реализации окисления в полярном растворителе связаны с применением высококоррозионных сред (кипящие органические кислоты при температуре процесса 150— 230°С и давлении 0,7—3,5 МПа), наличием в цикле значительных объемов дорогостоящих катализаторов и растворителей, затратами на их регенерацию. Однако технически они преодолимы, и названный процесс относится к числу перспективных направлений синтеза терефталевой, тримеллитовей, нафтойных, бензойной, дифеновой [62, с. 210] и ряда других карбоновых, особенно по-ликарбонавых кислот ароматического ряда. [c.44]

    В концентрированных растворах (98—100 % ДЭГ), скорость коррозии, в отличие от более разбавленных растворов, непрерывно увеличивается с повышением температуры вплоть до температуры кипения. Это связано с тем, что в концентрированных растворах ДЭГ температура кипения выше температуры разложения 165°С, при которой происходит выделение агрессивных низкомолекулярных органических кислот муравьиной, уксусной, присутствие которых усиливает коррозию углеродистой стали. Образование низкомолекулярных кислот в результате термического и химического разложения диэтиленгликоля приводит к иодкислению раствора. Контакт с кислородом воздуха значительно увеличивает скорость образования органических кислот жирного ряда, поэтому удаление кислорода воздуха из системы установки регенерации ДЭГ может явиться одним из методов уменьшения коррозии оборудования в средах, содержащих растворы ДЭГ. [c.173]

    Производство изоактилового спирта, масляного ангидрида, масляной кислоты, пенопласта, винилтолуола, поливинилтолуола, полиуретанов для литья, полиформальдегида, регенерации органических кислот (уксусной, масляной и др.), формалина, уротропина, пентаэритрита, метилпирролидона, поли-винилпирролидона, продуктов органического синтеза (спирта, этилового эфира и пр.) из нефтяного газа при переработке менее 5000 м /ч. [c.235]


    Регенерация растворов, содержащих в своем составе в качестве комплексообразователей органические кислоты (молочную, пропионо-вую, янтарную, яблочную), соли щелочно земельных металлов (Са М , Ва) и стабилизирующую добавку — сульфид свинца производится следующим образом Вначале нз обработанного раствора удаляют никель на ионообменной колонке Затем в раствор для удаления фосфитов добавляют гидраты окиси ити карбо[1аты щелочноземельных металлов Са(ОН)г Ва(ОН)г или g O  [c.45]

    Регенеративная щелочная очистка. Высаливание. Соли фенолов, тиофенолов и меркаптанов образуют в концентрированных растворах едкого натра или кали отдельную жидкую фазу. Это используется для регенерации очистных растворов в процессе очистки дистиллятных нефтепродуктов двухфазным растворителем [16, 31]. Верхний жидкий слой двухфазной щелочной системы содержит соли органических кислот и щелочных металлов. В этом слое растворены также щелочные соли меркаптанов и сероводорода, неболь-щие количества воды и непрореагировавшая щелочь. В нижнем слое содержатся только вода и щелочь. Соотношения их представлены графически на треугольной диаграмме, изображенной на рис. 5. [c.100]

    Сильноосновные аниониты поглощают анионы не только минеральных, но и органических кислот, которые лишь частично удаляются при регенерации. Чтобы при этом не происходило накопления органических кислот в анионите, применяют микропористые аниониты. Они имеют однородные крупные поры, из которых органические вещества легко удаляются при регенерации. При удалении из воды ионов возрастает ее удельное электрическое сопротивление и падает удельная электропроводимость. При глубоком обессоливании удельное электрическое сопротивление воды должно быть не выше (5—10)-10 Ом-см, а удельная электропроводимость 0,1—0,2 мкСм/см. [c.135]

    Исходное меркаптансодержащее сырье предварительно очищается от сероводорода и органических кислот в колонне 1 промывкой раствором щелочи, затем поступает в экстрактор К-2, где из него раствором щелочи экстрагируются низкомолекулярные меркаптаны. Экстрактный раствор из К-2 поступает в реактор Р-1, где производится каталитическое окисление меркаптидов натрия в дисульфиды кислородом воздуха с одновременной регенерацией раствора щелочи (или раствора Мерокс в случае применения раство- [c.518]

    Солевая ректификация. Отыскание жидкого разделяющего агента, способного изменить относительную летучесть компоиентов разделяемой смеси в требуемой степени и желательном иаправлеиии применительно к экстрактивной и азеотропной ректификации, как уже подчеркивалось, представляет очень сложную задачу. Заметим также, что даже при наличии эффективного разделяющего агента его регенерация часто очень сложна, как, например, прн азеотропной ректификации смеси этанол—вода. В ряде случаев увеличение относительной летучести блпзкокнпящих компонентов, сдвиг и даже полное исчезновение азеотропной точки достигается методом солевой ректификации. Последняя основана на изменении условий фазового равновесия системы в присутствии минеральных солей, растворимых в жидкой фазе, но ие вступающих с иен в химическую реакцию. Таким образом, отличительной особенностью солевой ректификации является присутствие в жидкой фазе нелетучего вещества, выполняющего роль разделяющего агента. Как правило, относительная летучесть компонентов бинарной смесн возрастает с увеличением концентрации соли в растворе, причем уменьшается летучесть компонента, в котором данная соль лучше растворима. Так, например, при добавлении солей к водным растворам спиртов, органических кислот и других веществ падает относительная летучесть воды. [c.535]

    Для удаления из ионитов примесей железа (III) сорбент промывают растворами хлороводородной кислоты до того мс мента, пока вытекающий из колонки раствор не будет свободе от ионов (проба с гексацианоферратом (II) калия). Для удалени из ионита органических веществ в колонку п]риливают 10%-ны раствор гидроксида натрия до установления сорбционного рав новесия. После этого колонку промывают дистиллированно) водой. Регенерацию катионита проводят 1 М раствором хлоро водородной кислоты. Регенерацию заканчивают после того, ка [c.336]

    Эфиры органических кислот реагируют с изопропилмагний-хлоридом с выделением пропана, а в отдельных случаях пропилена. Диэтиловые эфиры малоновой и диэтилмалоновой кислот, этиловый эфир дифенилуксусной и л-пропиловый эфир циан-уксусной кислот дают пропан с выходом, близким к количественному. Вероятно реакция протекает с промежуточной эиолиза-цией эфира и регенерацией его [c.318]

    Жидкофазное окисление толуола используется в промышленности для производства бензойной кислоты [18, с. 210]. Окисленш толуола ведут при 150—230 °С и давлении 7—35 кгс/см (опти мальное давление 21 кгс/см ) в растворе бензойной кислоты, со держащем менее 5% толуола. Катализатором являются кобаль товые или марганцевые соли органических кислот, промотирован ные соединениями брома. Выход кислоты в этом процессе близор к теоретическому. Завод, работающий в Англии по этой техноло ГИИ, мощностью 26,5 тыс. т/год был построен в 1964 г. Исполь зование полярного и зачастую агрессивного растворителя услож няет подбор материалов для изготовления аппаратуры и удоро жает последнюю. Значительны затраты и на регенерацию раство рителя и катализатора, расход которого больше, чем при окис лении без растворителя [19]. Поэтому, если жидкофазное окисле ние в среде полярных растворителей и является одним из наибо лее надежных и распространенных способов синтеза терефталево кислоты, то окисление в среде углеводорода, по-видимому, лучши способ получения монокарбоновых кислот. Исключение состав ляет получение нафтойных кислот. При окислении соответствуй щих метилнафталинов в расплаве выход кислот незначителен велико смолообразование. Единственным надежным способом окг зывается окисление в среде уксусной кислоты в присутствии ац тата кобальта, промотируемое бромидами [20, 21]. [c.149]

    Установлено, что действующими веществами каланхое является комплекс веществ кислотного характера (органические кислоты), в том числе аминокислоты, полисахариды, флавоноиды, катехипы, микроэлементы и др.). Наличием этих соединений в значительной мере обусловлено нротивовоснолительное и усиливающее регенерацию тканей действие. Проведен аминокислотный анализ и подтверждено наличие 12 аминокислот аспарагиновая кислота, треопип, серии, глутаминовая кислота, глицин, аланин, валин, лейцин, фенилаланин, гистидин, изолейцин, аргинин основные органические кислоты - яблочная, лимонная, щавелевая. [c.48]

    Продукты, получающиеся при взаимодействии камфена с уксусной или муравьиной кислотой, содержат растворенный или взмученный катализатор (серную кислоту), в присутствии которого нельзя отогнать непрореагировавшие органическую кислоту и камфен, так как по условиям равновесия, определяемым уравнением (6), по мере удаления органической кислоты изоборнильный эфир распадается на камфен и органическую кислоту. Поэтому непрореагировавшую кислоту вымывают из продуктов фор-милнрования или ацетилирования камфена водой, растворами едкого натра или соды в специально предназначенных для этой цели конических отстойниках с мешалками. В результате получают разбавленные органические кислоты или водные растворы солен этих кислот, которые перерабатывают обычными способами в высококонцентрированные кислоты. Отмытый, нейтрализованный и высушенный эфир подвергают ректификации для выделения непрореагировавшего камфена. Как ректификация эфира, так и регенерация органических кислот из их водных растворов представляют обременительные дополнительные операции. На рис. 14 приведена технологическая схема установки для получения эфиров изоборнеола из камфена. [c.86]

    Оставшийся в аппарате после перегонки камфары катализатор, вследствие восстановления его до металлической меди, обладает пирофорными свойствами. В целях противопожарной безопасности (в период охлаждения аппарата) катализатор изолируется от атмосферного воздуха подушкой из углекислого газа, затем его выгружают из аппарата через специальный люк после каждой или после четырех-пяти операций. Выгрузка катализатора ос-тожняется, если исходные борнеолы были плохо отмыты от солей органических кислот, так как в этом случае он шлакуется на стенках аппарата. Регенерация катализатора не сложна. Сначала из него возгонкой удаляют небольшое количество камфары, затем выжигают в токе воздуха органические вещества и растворяют окиси в серной или азотной кислотах. Далее следует осаждение углекислых солей меди или никеля содой. Регенерацию катализатора проще производить в отсутствие носителя. [c.119]


Смотреть страницы где упоминается термин Органические кислоты регенерация: [c.345]    [c.85]    [c.223]    [c.172]    [c.174]    [c.23]    [c.26]    [c.403]    [c.77]    [c.48]    [c.129]    [c.66]    [c.26]    [c.129]    [c.445]    [c.26]   
Химия и технология камфары (1976) -- [ c.103 ]




ПОИСК





Смотрите так же термины и статьи:

Кислота органическая

Кислота регенерация

Получение кобальтового катализатора и регенерация кобальта в производстве оксосинтеза Рудковский, В. Ю. Ганкин. Получение и свойства кобальтовых солей органических кислот

РЕГЕНЕРАЦИЯ ОТРАБОТАННЫХ РАСТВОРОВ СЕРНОЙ КИСЛОТЫ ВЫСАЛИВАНИЕМ ОРГАНИЧЕСКИХ ПРИМЕСЕЙ



© 2025 chem21.info Реклама на сайте