Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Условия фазового равновесия в гетерогенных системах

    Общее условие фазовых равновесий. Равновесия в гетерогенных системах, в которых не происходит химического взаимодействия между компонентами, а имеют место лишь фазовые переходы, т. е. процессы перехода компонентов из одной фазы в другую (или в другие), называются фазовыми равновесиями. Рассмотрим сначала общее условие равновесия в гетерогенных системах, правило фаз и некоторые другие вопросы, относящиеся к любым случаям гетерогенных равновесий (как фазовым, так и химическим). Температуру и давление будем считать постоянными и одинаковыми для всех частей равновесной системы. [c.242]


    Фазовые равновесия в гетерогенных системах. Правило фаз Гиббса. Гетерогенными фазовыми равновесиями называются равновесия, устанавливающиеся в физических процессах перехода веществ из одной фазы (простой или смешанной) в другие фазы (простые или смешанные). Такие равновесия наблюдаются при кипении жидкости под постоянным давлением (жидкость пар), плавлении кристаллов (твердое жидкость), при выделении кристаллов из насыщенного раствора соли (жидкость—твердое—пар) и т. д. Термодинамическое равновесие в гетерогенных системах характеризуется сколь угодно длительным сосуществованием нескольких фаз в условиях постоянства давления и температуры при этом концентрации веществ в каждой фазе и парциальные давления не изменяются, т.е. = О, и [c.156]

    Для вывода условий фазового равновесия ( 88) и правила фаз ( 89) мы для области невысоких давлений пара пользовались сопоставлением давления насыщенного пара данного компонента над разными фазами. Это свойство тоже характеризует способность его к выходу из данной фазы. Однако такой путь рассуждений является достаточным только для области невысоких давлений пара, когда к парам применимы законы идеальных газов и, следовательно, применимо ур. (VIH, 16). В общем же случае вместо давления следовало бы сопоставлять фугитивность насыщенного пара или, что является более общим, сопоставлять химические потенциалы. Можно показать, что для общего случая условием равновесия для всех фазовых переходов в любой гетерогенной системе является следующее  [c.258]

    Гетерогенные равновесия в процессах перехода вещества из одной фазы в другую, не сопровождающиеся изменением химического состава этого вещества, принято называть фазовыми равновесиями. Условия, при которых отдельные фазы системы находятся в равновесии друг с другом, выражаются законом равновесия фаз, называемым правилом фаз. [c.179]

    Таким образом, условием фазового равновесия для данного компонента Б гетерогенной системе может служить равенство парциальных давлений (летучестей) насыщенного пара этого компонента над всеми фазами. [c.172]

    Фазовые равновесия в гетерогенных системах. Правило фаз Гиббса. Гетерогенными фазовыми равновесиями называются равновесия, устанавливающиеся в физических процессах перехода веществ из одной фазы (простой или смешанной) в другие фазы (простые или смешанные). Такие равновесия наблюдаются при кипении жидкости под постоянным давлением (жидкость пар), плавлении кристаллов (твердое жидкость), при выделении кристаллов из насыщенного раствора соли (жидкость—твердое—пар) и т. д. Термодинамическое равновесие в гетерогенных системах характеризуется сколь угодно длительным сосуществованием нескольких фаз в условиях постоянства давления и температуры при этом концентрации веществ в каждой фазе и парциальные давления не изменяются, т.е. 1 i dn.i = О, и как показано в гл. VII, 8, химический потенциал любого компонента I во всех фазах а, р, у... одинаков, т. е. р, = = [У. =. ... В целом многофазная гетерогенная система в состоянии истинного равновесия имеет минимальное абсолютное значение изобарного потенциала. [c.156]


    Основным законом учения о фазовых равновесиях в гетерогенных системах является правило фаз Гиббса, определяющее условия равновесия в таких системах. Это правило устанавливает соотношение между числом степеней свободы, числом независимых компонентов и числом фаз для систем, находящихся в термодинамическом равновесии. [c.197]

    Основные научные работы посвящены изучению двойных систем. Предложил (1909) вывод уравнения всех типов диаграмм состояния двойных систем и разработал методику исследования металлических сплавов. Высказал (1911), предположение о существовании в высокоуглеродистых сплавах карбидов различного состава. Исходя из правила фаз Гиббса, вывел условия фазового равновесия в гомогенных и гетерогенных системах, состоящих из двух или нескольких компонентов. Построил диаграммы состояния для различных систем (около 100). [22, 97, 183] [c.110]

    Фазовые равновесия. Общие закономерности, которым подчиняются равновесные гетерогенные системы, состоящие иа любого числа фаз и любого числа веществ, устанавливаются правилом фаз Гиббса. Руководствуясь правилом фаз, строят диаграммы, которые позволяют наглядно следить за состоянием системы при нагревании, охлаждении и при изменении ее состава. В фармации, пользуясь диаграммами состояния, можно определять оптимальные условия приготовления лекарственных форм с заданными свойствами. Изучение фазовых равновесий позволяет грамотно решать вопросы, связанные с очисткой лекарственных веществ перегонкой с водяным паром и разделением веществ ректификацией. С помощью фазовых диаграмм можно решать вопросы совместимости при изготовлении лекарственных форм и возможности химического взаимодействия между отдельными компонентами. [c.10]

    В монографии описываются методы расчета условий фазового равновесия в одно- и многокомпонентных системах, состоящих из газовой, жидких и твердых фаз, а также методы проверки экспериментальных данных о гетерогенном равновесии. [c.2]

    В настоящей книге автор поставил своей целью восполнить этот пробел. Основная задача этой книги — дать систематическое изложение важнейших методов расчета параметров состояния равновесных фаз, а также методов проверки экспериментальных данных о фазовом равновесии в системах разных типов. Автор стремился сконцентрировать внимание на практических, инженерных сторонах проблемы, чтобы книга могла стать руководством по изучению и расчетам условий гетерогенного равновесия. При этом представлялось целесообразным рассмотреть общие вопросы термодинамической теории фазового равновесия лишь в той мере, в какой это необходимо для обоснования излагаемых в книге расчетных методов. Есть еще одно основание для этого. В период работы над [c.3]

    Связь температуры кипения раствора, его состава и давления определяется условиями фазового равновесия между жидкостью и паром. Эта связь в соответствии с термодинамической теорией гетерогенного равновесия выражается уравнением состояния равновесной системы  [c.186]

    Диаграмма состояния воды. Условия равновесия гетерогенной системы могут быть наглядно представлены графически. Подобные графики называются диаграммами состояния, или фазовыми диаграммами. [c.135]

    Равновесие в системе, состоящей из двух или большего числа фаз называется фазовым или гетерогенным. К фазовым равновесиям относятся равновесия типа ti тг, тч ж, т г, Ж1ч Ж2, ж г. Гетерогенная система будет находиться в состоянии равновесия при выполнении условий  [c.321]

    Согласно выводу неравенства (1Х.103) — (IX.105) являются необходимыми, но не достаточными условиями устойчивости относительно непрерывных изменений состояния. В самом деле, может представиться такой случай, когда эти неравенства будут выполнены, а состояние гетерогенной системы будет неустойчивым. Так, если одна или несколько фаз становятся неустойчивыми [при этом знаки соответствующих неравенств (IX. 100) изменяются на обратные], ТО гетерогенная система в целом также становится неустойчивой. Однако при этом левая часть неравенства (1Х.103) может сохранить свой положительный знак. Таким образом, можно утверждать, что если гетерогенная система находится в состоянии устойчивого равновесия и если протекающие в ней фазовые процессы вызывают изменение состояния фаз, то условие (1Х.103) и его следствия (IX.104) и (1Х.105) непременно выполняются. [c.224]

    Фазовое равновесие в гетерогенной системе характеризуется определенными условиями равенством температур во всех фазах системы и равенством давлений и химических потенциалов каждого компонента во всех фазах  [c.61]

    Будучи фундаментальным положением учения о гетерогенных равновесиях, правило фаз играет большую роль при анализе различных диаграмм состояния, которые обычно строят в координатах состав — температура и которые изображают на плоскости или в пространстве фазовые равновесия в различных системах в зависимости от их химического состава и температуры. Правило фаз позволяет определить максимально возможное число равновесных фаз системы в заданных условиях. Оно позволяет контролировать правильность экспериментального построения диаграмм состояния и устранять возможные ошибки в изображении фазовых равновесий. [c.268]


    Концентраций мономера в полибутадиеновой и полистирольной фазах влияет на кинетику сополимеризации в них и молекулярные параметры продуктов реакции, что в свою очередь отражается на структуре образующегося гетерогенного материала и его физикомеханических свойствах. На основании термодинамической теории растворов полимеров Флори — Хаггинса проведен расчет фазового состава модельной системы для случая истинного термодинамического равновесия при условии, что растворитель — стирол является хорошим. для обоих полимеров (т. е. когда < 0,5) [283, с. 15]. [c.161]

    Таким образом, нами рассмотрены основные виды двухфазных равновесий в гетерогенной конденсированной системе. Если рассматривать варианты фазовых равновесий, которые можно термодинамически сконструировать в двухкомпонентной системе, то их в принципе может быть достаточно много, особенно при условии, что один или оба компонента имеют по нескольку полиморфных превращений. Однако такие варианты принципиально нового ничего не дают по сравнению с рассмотренными видами двухфазных равновесий. [c.277]

    Образование в процессе полимеризации (сополимеризации) этилена полимера может приводить к нарушению гомогенности реакционной смеси. Изучение фазового равновесия этилен — полиэтилен [328, 354—356] в основном сводилось к определению границы гомогенности системы при содержании полиэтилена до 30% (масс.). В работе [357] приведены данные по фазовому равновесию системы этилен — полиэтилен в зависимости от структуры полиэтилена (рис. 8.7). Приведенные на рис. 8.7 данные показывают, что гомогенность системы этилен — полиэтилен определяется не только условиями процесса (температура, концентрация полимера), по и молекулярной массой и ММР полиэтилена. Необходимо заметить, что при сополимеризации этилена с винилацетатом граница образования двухфазной системы находится при более низком давлении [357], причем при увеличении содержания винилацетата в реакционной смеси давление, прй котором наступает гетерогенность, снижается. [c.190]

    Устойчивость гетерогенных систем определяется фазовыми и химическими равновесиями. При фазовых равновесиях переход компонентов системы из одной фазы в другую не сопровождается химическим взаимодействием. Число термодинамических степеней свободы системы при равновесии определяется числом условий, которые можно изменять в определенных пределах, не нарушая при этом числа и видов фаз систем. Такими независимыми переменными являются концентрация, температура, давление. Равновесие в гетерогенных системах подчиняется закону равновесия фаз или правилу фаз Гиббса. Для систем, в которых отсутствует химическое взаимодействие, число термодинамических степеней свободы С в равновесной многофазной системе равно числу компонентов К плюс 2, минус число фаз Ф  [c.14]

    К настоящему времени разработаны многочисленные практические применения термодинамических закономерностей для количественного решения вопросов, связанных с фазовым равновесием. Между тем в изложении учения о равновесии в гетерогенных системах в курсах физической химии и специальных курсах, во многих появляющихся в печати книгах все еще велик элемент онисатель-ности. Многие существенные достижения в разработке инженерных методов расчета условий фазового равновесия, а также методов проверки экспериментальных данных остаются не обобщенными и являются достоянием лишь небольшого числа специалистов, работающих в этой области. [c.3]

    Так как фазовые равновесия определяются свойствами фаз при условиях их сосуществования, то в результате решения этих задач можно, вообще говоря, надеяться на получение термодинамических данных только вдоль границ равновесия фаз. Как уже говорилось, цель расчетов можно считать достигнутой, если в каждой точке кривой или поверхности равновесия фаз станут известны величины энергии Гиббса и всех ее первых частных производных по термодинамическим переменным, что эквивалентно в общем случае знанию на фазовой границе энтальпии, энтропии, объема и химических потенциалов всех компонентов фазы и, естественно, любых других функций, являющихся комбинацией вышеназванных. Это не исчерпывающая информация о термодинамике системы на фазовой границе, так как остаются неопределенными высшие производные термодинамического потенциала. Но такой информации достаточно, чтобы находить энергии Гиббса в области гомогенности фазы, непосредственно примыкающей к границе ее существования, и это максимум того, что можно извлечь из условий гетерогенного равновесия, не прибегая к вне-термодинамическому моделированию функциональных зависимостей свойств. [c.24]

    Найденные из термодинамики условия равновесия в дальнейшем будут использованы для определения фазового равновесия в гетерогенных и гомогенных системах. [c.18]

    В. И. Касаточкина, который рассматривает графитацию как гомогенный процесс. Положения о фазовых состояниях гомогенной системы были развиты В. А. Каргиным и Г. Л. Слонимским [96] по отношению к полимерам. Под фазой они понимают гомогенную систему, находящуюся в термодинамическом равновесии. Гомогенная система, в которой нет поверхностей раздела между ее частями, может быть химически неоднородной. Понятие фаза не отождествляется с понятием агрегатное состояние . Так, твердые стеклообразные тела термодинамически являются жидкими фазами к твердым фазам относятся только кристаллические тела. Гомогенность понимается без учета неоднородностей, обусловленных молекулярным строением тела, и аморфный полимер считается гомогенным телом, а микрокристаллический полимер, в котором имеются неупорядоченные области, — гетерогенным. При этом авторы утверждают, что внутренние напряжения в полимере отражаются на форме кристаллов и ограничивают их рост. Пластинчатые и игольчатые формы вызывают меньше напряжений и потому быстрее растут. Развивающаяся кристаллизация приводит к минимуму внутренних напряжений и к наилучшим условиям для их релаксации, т. е. к уменьшению внутренней энергии. [c.203]

    Система, состоящая из воды, пара и льда, относится к гетерогенным. Она состоит из трех фаз твердой, жидкой и газообразной. Все эти фазы находятся в равновесии при определенных условиях (параметрах). Следовательно, фазовая диаграмма состояния воды (рис. 23) показывает зависимость между давлением водяного пара и температурой, а также условия одновременного существования воды в различных фазах. Каждая точка на кривых диаграммы соответствует равновесию между двумя фазами. Кривая АО [c.69]

    Для решения этой задачи в книге [7] используются условия фазового равновесия, выраженные через химические потенциалы компонентов. Автор приходит к сложной системе диффереяциалыых уравнений, решение которой очень громоздко и не позволяет получить явное выражение для теплоемкости гетерогенной системы, пригодное для дальнейшего анализа. [c.5]

    ФАЗОВОЕ РАВНОВЕСИЕ — термодинамич. равновесие в гетерогенных системах, в к-рых не происходит химич. взаимодействия между компонентами, а имеют место только процессы перехода компонентов из одной фазы в другую. Условием Ф. р. сгтстемы является равенство химического потенциала любого данного компонента во всех фазах. Частный случай Ф. р.— равновесие между различными агрегатными состояниями вещества. См. также Фаз правило. [c.187]

    Основной характеристикой гетерогенной системы сорбент— элюент, определяемой с помош,ью газовой хроматографии, является коэффициент распределения сорбата между фазами Г, простейшим образом связанный с FJ [см. соотношение (1.23)]. На основании известных термодинамических соотношений [3], зная Г, можно рассчитать термодинамические характеристики процесса сорбции изменения парциальной дифференциальной мольной свободной энергии энтальпии ДЯ и энтропии Используя специальные методы газовой хроматографии — дифференциальную хроматографию [79], известную также как метод возмущений [80], вакантохроматографию [81], а также хроматографию с использованием радиоактивных изотопов, можно изучать растворимость элюента в неподвижной жидкости [24, 25], выраженную в виде коэффициента распределения. Все указанные выше характеристики зависят от свойств обеих фаз хроматографической системы и условий проведения процесса элюирования сорбата и, следовательно, описывают гетерогенную систему в целом. Поскольку хроматографический процесс может считаться равновесным, постольку эти характеристики могут иметь ценность при изучении любых гетерогенных систем, которые могут быть имитированы с помощью газохроматографического эксперимента. В частности, Кобаяши и сотр. [25] изучали фазовые равновесия в абсорбере легких углеводородов. [c.38]

    За последнее десятилетие гиббсовская термодинамика гетерогенных систем вступила в новый этап своего развития, вызванный к жизни возможностями использования современных численных методов и технических средств для решения задач, требующих большого объема вычислений. На этом этапе не формулируются новые принципы учения о гетерогенных равновесиях, но чрезвычайно расширяется сфера его практического применения для количественных расчетов свойств конкретных объектов. Естественно, что при этом наблюдается смещение центра тяжести сложившейся системы понятий и выводов. Правила или соотпошения, считавшиеся важнейшими, основными, перестают иногда выполнять эту роль, а второстепенные, не рассматривавшиеся ранее в качестве принципиальных направления исследований оказываются на новом этапе исключительно по.пезными и быстро развиваются. Например, при качественном анализе гетерогенных равновесий важнейшим термодинамическим вьто-дом является правило фаз Гиббса, позволяющее ориентироваться в сложных взаидюсвязях строения многофазной системы и внешних параметров, при которых она находится. Математически правило фаз выражает, как известно, условие существования решения системы уравнений, описывающей фазовые равновесия. При количественных расчетах правило фаз получается как естественный и далеко не самый важный результат решения этой системы уравнений. С другой стороны, при качественном анализе равновесий совершенно несущественна форма функциональной зависимости химических потенциалов компонентов от термодинамических параметров для численного же решения задачи ее необходимо знать. Не удивительно поэтому, что способам аппроксимации термодинамических функций уделяется значительно больше внимания, чем прежде. [c.3]

    Исследования фазовых равновесий при повышенных давлениях в условиях протекания окислительно-восстановительных процессов имеют особо важное значение для дальнейшего развития физической химии силикатов, поскольку здесь возможно значительно ускорить протекание медленно идущих низкотемпературных реакций, в результате каталитического воздействия кислорода, находящегося при высоком давлении. Этот новый валшейший раздел гетерогенных равновесий в силикатных системах составляет часть общей программы работ Института химии силикатов. [c.76]

    Если вся система реакций (1.37), (1.38) обратима и близка к состоянию равновесия, то состав катализатора, вне зависимости от исходного, целиком определяется термодинамическими условиями равновесия. В этом случае, если состав катализатора, например окисла, является функцией давления одного из компонентов, например кислорода, то, в соответствии с условиями гетерогенного равновесия, для всей области температур Т и парциальных давлений Р, за исключением точки равновесия с определенными Т ш Р, катализатор будет представлять собой одну фазу. Если реакция проводится в точке равновесия, то катализатор может быть двухфазным, однако практическое осуществление такого случая невероятно. Иное дело, если протекающие в системе реакции, например реакции контактного окисления органических соединений, практически необратимы, тогда фазовый состав работающего катализатора целиком определяется кинетическими, а не термодинамическими параметрами. При проведении обратимых реакций в условиях, далеких от равновесия (что большей частью бывает на практике), фазоЬый состав катализатора также не определяется термодинамикой. [c.50]


Смотреть страницы где упоминается термин Условия фазового равновесия в гетерогенных системах: [c.127]    [c.146]    [c.391]    [c.237]    [c.17]    [c.310]    [c.52]   
Смотреть главы в:

Гетерогенные равновесия -> Условия фазового равновесия в гетерогенных системах




ПОИСК





Смотрите так же термины и статьи:

Гетерогенное равновесие

Равновесие в гетерогенных системах

Равновесие системе

Равновесие фазовое

Система гетерогенная

Условие фазового

Условия равновесия

Условия равновесия системы



© 2025 chem21.info Реклама на сайте