Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ферменты регуляция по принципу обратной связи

    В процессе ретроингибирования (ингибирование по принципу обратной связи) активность фермента, стоящего в начале многоступенчатого превращения субстрата, тормозится конечным метаболитом, что детально разработано при изучении регуляции био синтеза пиримидиновых нуклеотидов и новообразования ряда аминокислот  [c.34]

    Регуляция по принципу обратной связи может срабатывать почти мгновенно и является обратимой кроме того, определенный конечный продукт может ингибировать ферменты, катализирующие его синтез, и при этом быть активатором ферментов другого метаболического пути Молекулярная основа такого типа контроля в клетках хорошо изучена, однако здесь мы данного вопроса касаться не будем, поскольку для [c.106]


    Наиболее гибким и широко распространенным способом контроля метаболизма в клетке является регуляция активности ферментов по принципу обратной связи. [c.11]

    В реальных условиях клеточного метаболизма концентрация субстрата, потребляемого в ферментативных реакциях, изменяется не только в результате самой реакции, но и за счет притока его в реакционный объем. Одновременно происходит и отток продукта из сферы реакции в другие области, где он используется в дальнейших метаболических превращениях. Иными словами, в клетке каждая отдельная реакция, так же как и их совокупность, представляет собой открытую систему, обладающую механизмами саморегуляции. Одним из самых мощных способов регуляции ферментативного процесса является изменение активности фермента с помощью различных ингибиторов. Существуют, как известно, конкурентные ингибиторы, занимающие места субстрата в активном центре фермента с образованием неактивного комплекса. Возможно также неконкурентное, или аллостерическое, ингибирование, при котором ингибитор не имеет структурного сродства с субстратом и присоединяется не к активному центру фермента, а к определенным местам белковой глобулы, вызывая деформацию фермента. Регуляторные эффекты могут осуществляться также по принципу обратной связи, когда при больших концентрациях субстрата или продукта угнетается реакция. Наряду с ингибиторами имеются и активаторы — вещества, повышающие активность фермента. Активирующий эффект может оказывать и сам продукт реакции (активация продуктом). [c.39]

    Наиболее простой случай аллостерической регуляции — регуляция первого фермента неразветвленного биосинтетического пути его конечным продуктом. Если конечный продукт накапливается в избытке, он подавляет активность первого фермента в процессе, называемом ретроингибированием, или ингибированием по принципу обратной связи. Примером такого типа регулирования является ингибирование биосинтеза Ь-изолейцина. Превращение Ь-треонина в Ь-изо-лейцин включает пять ферментативных реакций (рис. 35). Первый [c.112]

    Крупномасштабные изменения, влияющие на метаболизм всей клетки, могут быть достигнуты регуляцией ключевых ферментов. Например, особая схема регуляции по принципу обратной связи позволяет клетке переключаться с расщепления глюкозы на ее биосинтез, или глюконеогенез. Потребность в таком обращении метаболического пути бывает особенно острой как в периоды напряженных тренировок, когда необходимая для мышечного сокращения глюкоза синтезируется в клетках печени, так и во время голодания, при котором глюкоза для выживания организма должна образовываться из жирных кислот и аминокислот. Обычный распад глюкозы до пирувата в процессе гликолиза катализируется несколькими различными последовательно действующими ферментами. Большинство реакций, катализируемых этими ферментами, легко обращается, однако три из них (стадии 1, 3 и 9 ш. рис. 2-20) фактически необратимы. На самом деле процесс расщепления глюкозы [c.107]


    Участие множественных молекулярных форм ферментов в регуляции метаболизма можно проиллюстрировать на примере синтеза аминокислот у бактерий. У Е. соИ аспартаткиназная реакция предшествует синтезу трех аминокислот треонина, лизина, метионина. Имеются три изоэнзима аспартаткина-зы (АК-1, АК-2 и АК-3), которые по принципу обратной связи ингибируются соответствующими аминокислотами. Вообще регуляция метаболизма изоферментами основана на различии их некоторых свойств, влияющих на скорости каталитического процесса (табл. 6.2). [c.83]

    Микроорганизмы обычно синтезируют каждую из аминокислот в определенных количествах, обеспечивая тем самым синтез специфических белков. Это объясняется тем, что контроль за скоростью биосинтеза каждой аминокислоты осуществляется по принципу обратной связи как на уровне генов, ответственных за синтез соответствующих ферментов (репрессия), так и на уровне самих ферментов, способных под действием избытка образующихся аминокислот изменять свою активность (ретроингибирование). Такой контроль исключает перепроизводство аминокислот, и выделение их из клетки возможно лишь у микроорганизмов с нарушенной системой регуляции. Такие культуры иногда выделяют из природных источников. Так, известны штаммы дикого типа, накапливающие в среде глутаминовую кислоту, пролин или валин. Однако основной путь селекции продуцентов аминокислот — получение ауксотрофных и регуляторных мутантов. Ауксотрофные мутанты отбирают на селективных средах после воздействия на суспензии бактериальных культур физическими (например, ультрафиолетовое или рентгеновское излучение) и химическими (этиленимин, диэтилсульфат, нитрозоэтил-мочевина и т. д.) факторами. У таких мутантов появляется дефектный ген, детерминирующий фермент, без которого не может осуществляться биосинтез определенной аминокислоты. Получение ауксотрофных мутантов — продуцентов аминокислот — возможно только для микроорганизмов, имеющих разветвленный путь биосинтеза, по крайней мере, двух аминокислот, образующихся из одного предшественника. Их биосинтез контролируется на уровне первого фермента общего участка согласованным ингибированием конечными продуктами (ретроингибирование). У таких ауксотрофных мутантов избыток одной аминокислоты при дефиците другой не приводит к подавлению активности первого фермента. Аминокислота, биосинтез которой блокирован в результате мутагенного воздействия, должна добавляться в ограниченном количестве. [c.20]

    Аллостерическая регуляция. Во многих строго биосинтетических реакциях основным типом регуляции скорости многоступенчатого ферментативного процесса является ингибирование по принципу обратной связи. Это означает, что конечный продукт биосинтетической цепи подавляет активность фермента, катализирующего первую стадию синтеза, которая является ключевой для данной цепи реакции. Поскольку конечный продукт структурно отличается от субстрата, он связывается с аллостерическим (некаталитическим) центром молекулы фермента, вызывая ингибирование всей цепи синтетической реакции. [c.155]

    На основании имеющихся данных можно различать два механизма регуляции действия ферментов по принципу обратной связи а) угнетение синтеза ферментов (репрессия) и б) угнетение ферментативной активности концентрацией конечного продукта. [c.238]

    Активный, нли каталитический, центр фермента — это сравнительно небольшой участок молекулы белка. Аминокислотный состав остальной части молекулы, особенно тех ее участков, которые находятся на поверхности структуры, может довольно сильно меняться в результате мутаций без изменения каталитической активности фермента. Тем не менее присоединение к различным участкам поверхности фермента других молекул может косвенно повлиять на катализ. В концентрированных растворах, каким является цитоплазма, молекулы могут агрегировать. Присоединение какой-либо молекулы к определенному участку на поверхности фермента способно изменить его структуру и в свою очередь вызвать увеличение или уменьшение каталитической активности. Так, при избыточном накоплении продукта какого-либо метаболического пути ингибитор, действующий по принципу обратной связи, взаимодействует указанным образом с ферментами и выключает их. Взаимодействия такого рода составляют один из распространенных способов регуляции. [c.64]

    Несмотря, однако, на эту сложность, существование некоторых регуляторных механизмов было четко доказано. Выше уже были рассмотрены два типа регуляции, в основе которых лежит принцип обратной связи. Один из них используется при синтезе ферментов и состоит в репрессии этого синтеза избытком фермента (гл. 6, разд. Е,2), а другой обеспечивает быстрый контроль активности фермента путем его ингибирования (гл. 6, разд. Е, 4). Когда имеет место постоянная скорость роста клеток, регуляция по типу обратной связи может оказаться достаточной для того, чтобы обеспечить гармоничное и пропорциональное увеличение концентрации всех составных частей. Такая ситуация наблюдается, например, на логарифмической стадии роста бактерий (гл. 6, разд. В) или в случае быстро растущих эмбрионов животных, когда все необходимые для них питательные вещества поступают из относительно неизменной материнской крови. [c.503]


    Изучение регуляции и контроля ферментов — молодая и быстро развивающаяся область биохимии, уже установившая, однако, ряд весьма сложных механизмов. Представляется возможным различить механизмы, общие для всех ферментов, такие как субстратная специфичность, оптимум pH и т. д. механизмы, общие для всех организмов, включающие ингибирование и репрессию по принципу обратной связи и механизмы, характерные для высших организмов, где существуют другие виды регуляции активности ферментов, например посредством действия гормонов. Приведя только один, уже известный нам пример, можно отметить, что вся сложная система описанных выше реакций, кульминацией которой является высвобождение глюкозы из гликогена, может приводиться в действие несколькими молекулами адреналина [148]. [c.538]

    Для разветвленных путей биосинтеза (а к таким относится большинство биосинтетических путей) механизмы регуляции усложняются, так как от активности первого фермента зависит биосинтез нескольких конечных продуктов. Очевидно следующее механизмы регулирования в этом случае должны быть видоизменены таким образом, чтобы перепроизводство одного конечного продукта не приводило к прекращению синтеза других связанных с ним конечных продуктов. Выработалось несколько механизмов контроля по принципу обратной связи применительно к разветвленным биосинтетическим путям. Они сводятся к тому, что в этом случае в регулировании принимают участие все конечные продукты этих путей. Если первый этап биосинтетического пути катализируется одним ферментом, на поверхности молекулы этого фермента имеются различные регуляторные центры, с каждым из которых связывается один из конечных продуктов, выполняющих функцию [c.116]

    Известны полиферментные системы, в которых скорость ферментативных реакций регулируется концентрацией конечного продукта в цепи последовательных превращений. В основе этого вида регуляции лежит ингибирование (или активация) ферментов первой стадии биосинтеза конечными продуктами реакции, называемое ингибированием (или активацией) по типу обратной связи. Ингибиторы и активаторы, действующие по принципу обратной связи, называются эффекторами. [c.434]

    Биосинтез белков является объектом генетического контроля. В бактериях, во всяком случае, он проявляется на уровне синтеза информационной РНК посредством взаимодействия особого ( регуляторного ) белка со специфическим участком ДНК (см. часть 22 и разд. 24.2.3). В тканях животных на механизмы, контролирующие уровень ферментов, влияют также ингибиторы синтеза РНК [149]. Детали этих механизмов контроля не важны в контексте данного раздела. Важным моментом является факт, что существуют механизмы регуляции концентрации ферментов на определенном метаболитическом пути посредством конечного продукта этого пути. Так, в бактериальных системах хорошо изучены индуцируемые ферменты. Пока субстраты этих ферментов присутствуют в среде, биосинтеза ферментов не происходит. Часто синтез нескольких ферментов какого-либо одного метаболи-тического пути индуцируется присутствием субстрата первого фермента этого пути. Индукция субстратом, таким образом, представляет собой механизм повышения концентрации системы ферментов по мере появления рабочей необходимости . Соответствующий механизм, понижающий избыточную концентрацию фермента, если последний или система ферментов производит слишком большие количества определенного метаболита, получил название репрессии по принципу обратной связи. Классическим примером этого механизма является ингибирование биосинтеза гистидина в Salmonella typhimurium высокими концентрациями гистидина. Концентрации всех десяти ферментов биосинтетической цепи в ответ на изменение концентрации гистидина изменяются совершенно одинаково [150]. [c.535]

    Скорость метаболических процессов зависит как от количества, так и от каталитической эффективности участвующих в них ферментов. Регуляция образования фермента путем индукции и репрессии и регуляция распада фермента, вероятно, не способны осуществить быстрое изменение количества фермента, поэтому данные формы контроля часто дополняются регуляцией активности уже существующих молекул фермента. Нередко такая регуляция осуществляется по принципу обратной связи, при котором конечный продукт реакции действует как ингибитор ферментов, катализирующих начальные стадии в цепи реакций, приводящих к его образованию. [c.120]

    Тысячи и тысячи различных биохимических реакций, одновременно осуществляемых клеткой, тесно скоординированы между собой. Разнообразные механизмы контроля регулируют активность клеточных ферментов при изменении существующих в клетке условий. Наиболее общая форма регуляции - это легко обратимое ингибирование по принципу обратной связи, когда первый фермент метаболического пути ингибируется конечным продуктом этого пути Более длительная форма регуляции включает в себя химическую модификацию одного фермента под действием другого, что часто происходит в результате фосфорилирования Комбинации регуляторных механизмов могут вызывать сильные и длительные изменения в метаболизме клетки. Не все клеточные реакции происходят в одних и тех же внутриклеточных компартментах, и пространственное разграничение клетки внутренними мембранами позволяет органеллам осуществлять специализацию своих биохимических функций. [c.111]

    В клетке изменение скорости катализируемых ферментами биохимических реакций может происходить по крайней мере двумя путями. Существует быстрый (действующий в течение секунд или минут) механизм регуляции ферментативной активности, который зависит от изменения каталитической активности индивидуальных молекул фермента. Имеется также несколько более медленный (действующий в течение многих минут или часов) механизм, лимитируемый количеством фермента, которое определяется скоростью процессов его синтеза и распада. Оба эти механизма обычно действуют при посредстве низкомолекулярных соединений, образующихся в клетке как промежуточные метаболиты или проникающие в нее из окружающей среды. В обоих механизмах используется важнейший принцип управления — принцип обратной связи. Прежде чем перейти к рассмотрению того, как этот принцип реализуется в регуляции активности ферментов, напомним несколько общих механизмов изменения скорости ферментативных реакций. [c.10]

    Для отбора объектов продуценты выращивают на селективной среде, содержащей подходящий аналог или антиметаболит, которые не включаются в обмен веществ (в частности, аналоги аминокислот не включаются в состав белков), что ведет к подавлению роста организма. Выжившие мутанты обладают дефектами в механизме регуляции актргености фермента по принципу обратной связи и поэтому служат важными объектами в обеспечении сверхсинтеза целевого продукта. [c.35]

    Известны ферменты (и число их непрерывно растет), которые наряду с каталитическими субъединицами, несущими активные центры, содержат регуляторные субъединицы, слабо (или, напротив, сильно) взаимодействующие с каталитическими субъединицами и выступающие в роли аллостерических модификаторов. В свою очередь регуляторные субъединицы могут претерпевать конформационные изменения, индуцируемые связыванием ингибиторов или активаторов. Наилучшим примером такого рода служит аспартат—карбамоилтрансфераза (гл. 4, разд. Г). Ее регуляторные субъединицы содержат центры связывания цитидинтрифосфата (СТР), который выступает в роли специфического ингибитора фермента. Значение этого ингибирования с точки зрения регуляции становится очевидным, если учесть, что аспартат—карбамоилтрансфераза катализирует первую реакцию пути синтеза пиримидиновых нуклеотидов (гл. 14, разд. Л, 1). СТР является конечным продуктом этого пути и вызывает ингибирование фермента по принципу обратной связи. [c.39]

    Аналогично ЦТФ как конечный продукт биосинтетического пути оказывает ингибирующий эффект на первый фермент (аспартаткарбамоилтран-сферазу), регулируя тем самым свой собственный синтез (см. главу 13). Этот тип ингибирования получил название ингибирования по принципу обратной связи, или ретроингибирования. Существование его доказано во всех живых организмах. В настоящее время он рассматривается как один из ведущих типов регуляции активности ферментов и клеточного метаболизма в целом .  [c.155]

    Известно, что синтез аминокислот в клетке ведется очень экономно и целенаправленно, под контролем специальных регулирующих систем. Регуляторный контроль обычна осуществляется по принципу обратной связи на уровне начального фермента или ферментов данного специфического пути образования метаболита. В случае значительного повьш1ения уровня конечного продукта (в данном случае лизина) включается механизм регуляции и один из ферментов в цепи последовательных превращений блокируется, синтез прекращается. Цель этого регулирования предотвратить избыточное образование и накопление данного метаболита, потребность в котором организма в настоящий момент полностью удовлетворяется. Но такая безупречная логика синтеза существует лишь у микроорганизмов, не имеющих нарушений и дефектов в этом. механизме. В природных условиях такие нарушения достаточно редки, но они все же встречаются. Например, найдено немало природных микроорганизмов, обладающих способностью к сверхсинтезу глутаминовой кислоты, аланина, валина. В то же время таких продуцентов по лизину, гомосерину, треонину и некоторым другим аминокислотам в природных условиях найдено не было. Для получения промышленных продуцентов пришлось пойти по пути получения мутантов, имеющих генетический дефект [c.26]

    Было найдено, что аналогичное поведение обнаруживает фермент расщепления цитрата из печени крыс [18] и фосфорибозилпирофосфатсинтетаза Е. oli [19]. В обоих случаях АДФ конкурирует с АТФ, хотя непосредственным продуктом реакции в последнем случае является АМФ Естественно возникает предположение, что высокая чувствительность системы к концентрации АТФ, постулируемая в рассматриваемом здесь механизме, лежит в основе общего механизма регуляции процессов, связанных с запасанием метаболической энергии, на которые накладываются процессы регуляции потребления энергии, действующие по принципу обратной связи . [c.243]

    Концентрации различных малых молекул в клетке довольно устойчивы, что достигается регуляцией по принципу обратной связи. Регуляторные молекулы такого типа корректируют поток метаболитов по определенному метаболическому пути посредством временного увеличения или уменьшения активности ключевых ферментов. Например, первый фермент в той или иной последовательности реакций обычно ингибируется конечным продуктом этого метаболического пути по принципу отрицательной обратной связи таким образом, если накапливается слишком много конечного продукта, дальнейшее поступление предшественников в данный метаболический путь автоматически ингибируется (рис. 2-36). В случае ветвления или пересечения метаболических путей, что происходит довольно часто, имеется, как правило, несколько точек, в которых осуществляется контроль различными конечными продуктами. Насколько важны такие процессы регуляции по принципу обратной связи, видно из рис. 2-37. где показана регуляпия ферментативной активности в последовательностях реакций, ведущих к синтезу аминокислот. [c.106]

    Этот же набор белков осушествляет адаптацию. heA фосфорилирует фермент, деметилируюший рецепторы хемотаксиса (см. рис. 12-48), повышая его активность и обеспечивая тем самым регуляцию хемотаксических рецепторов по принципу обратной связи. [c.390]

    Скорость биосинтеза пиримидинов коррелирует со скоростью биосинтеза пуринов, что указывает на координированный контроль синтеза нуклеотидов обоих типов. ФРПФ-синтетаза—фермент, катализирующий образование предшественника обоих путей биосинтеза,—ингибируется по принципу обратной связи как пуриновыми, так и пиримидиновыми нуклеотидами. Карбамоилфосфатсинтаза также подвержена ингибированию по принципу обратной связи нуклеотидами обоих типов, а ФРПФ активирует этот фермент. Таким образом, на нескольких этапах биосинтеза пуриновых и пиримидиновых нуклеотидов осуществляется перекрестная регуляция. [c.28]

    Было изучено лишь небольшое число других регуляторных ферментов умеренных галофилов. АТКаза N. osti ola (мол. вес 160 000) проявляет максимальную активность в 2 М растворе Na l. Однако этот фермент ие ингибируется по принципу обратной связи под действием СТР или UTP и на него не действует целый ряд других нуклеотидов. По-видимому, он не подвергается. аллостерической регуляции (Shindler, 1976). [c.407]


Смотреть страницы где упоминается термин Ферменты регуляция по принципу обратной связи: [c.406]    [c.110]    [c.474]    [c.217]    [c.144]    [c.152]    [c.257]    [c.150]    [c.96]    [c.122]    [c.150]    [c.23]    [c.222]    [c.23]    [c.222]    [c.23]    [c.112]    [c.384]    [c.385]   
Микробиология Издание 4 (2003) -- [ c.116 ]




ПОИСК





Смотрите так же термины и статьи:

Обратная связь

Регуляция

Регуляция по принципу обратной

Регуляция принципы



© 2024 chem21.info Реклама на сайте