Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Регуляция ферментативных процессов

    В реальных условиях клеточного метаболизма концентрация субстрата, потребляемого в ферментативных реакциях, изменяется не только в результате самой реакции, но и за счет притока его в реакционный объем. Одновременно происходит и отток продукта из сферы реакции в другие области, где он используется в дальнейших метаболических превращениях. Иными словами, в клетке каждая отдельная реакция, так же как и их совокупность, представляет собой открытую систему, обладающую механизмами саморегуляции. Одним из самых мощных способов регуляции ферментативного процесса является изменение активности фермента с помощью различных ингибиторов. Существуют, как известно, конкурентные ингибиторы, занимающие места субстрата в активном центре фермента с образованием неактивного комплекса. Возможно также неконкурентное, или аллостерическое, ингибирование, при котором ингибитор не имеет структурного сродства с субстратом и присоединяется не к активному центру фермента, а к определенным местам белковой глобулы, вызывая деформацию фермента. Регуляторные эффекты могут осуществляться также по принципу обратной связи, когда при больших концентрациях субстрата или продукта угнетается реакция. Наряду с ингибиторами имеются и активаторы — вещества, повышающие активность фермента. Активирующий эффект может оказывать и сам продукт реакции (активация продуктом). [c.39]


    С учетом новейших достижений в области биохимической науки тщательно отобран материал по ферментативному катализу, витаминам, нуклеиновым кислотам, гормонам, процессам переноса наследственной информации в живых организмах, биоэнергетике, метаболизму основных классов жизненно необходимых соединений, нейроэндокринной регуляции биохимических процессов и др. Рассмотрены некоторые аспекты фото- и хеморецепции, биохимии нервной, мышечной и иммунной систем, а также прикладные направления биохимической науки. Цель учебного пособия — формирование у будущих специалистов представлений о фундаментальных достижениях в изучении химических основ жизни и развитии исследований в этой области научного знания. [c.2]

    Так как проблема компенсации сводится в данном случае к задаче регуляции активности ферментов, большая часть механизмов, эффективно регулирующих метаболические процессы в условиях постоянной температуры, потенциально могла бы быть пригодной и для компенсации температурных эффектов. Особенно важными представляются три основных способа регуляции ферментативной активности  [c.246]

    Аллостерическая регуляция. Во многих строго биосинтетических реакциях основным типом регуляции скорости многоступенчатого ферментативного процесса является ингибирование по принципу обратной связи. Это означает, что конечный продукт биосинтетической цепи подавляет активность фермента, катализирующего первую стадию синтеза, которая является ключевой для данной цепи реакции. Поскольку конечный продукт структурно отличается от субстрата, он связывается с аллостерическим (некаталитическим) центром молекулы фермента, вызывая ингибирование всей цепи синтетической реакции. [c.155]

    Регуляция ферментативной активности может осуществляться за счет ковалентной обратимой модификации новосинтезированных белковых макромолекул. Это связано в первую очередь с ферментативным присоединением к ним низкомолекулярных химических группировок в результате фосфорилирования, гликозилирования, метилирования и т. д. Присоединение фосфатной группы к гидроксилу аминокислотного остатка полипептидной цепи может как увеличить, так и снизить ферментативную активность. Примером тому может служить фосфорилаза — фермент, катализирующий отщепление остатков глюкозы от гликогена. В исходном состоянии он неактивен, но при фосфорилировании, осуществляемом посредством фермента протеинкиназы, происходит его активация и вовлечение в процесс метаболизма глюкозы. На- [c.82]


    Согласованный биосинтез клеточных компонентов регулируется очень точными и целенаправленными механизмами регуляции ферментативных процессов, выработанными в ходе длительной эволюции. В этой регуляции изменяется либо количество соответствующих ферментов, либо их активность. [c.46]

    Глубокое изучение механизмов регуляции ферментативных процессов, используемых в производстве культур микроорганизмов, дает возможность выбрать оптимальную среду выращивания для обеспечения высокого выхода полезного продукта. [c.51]

    Все эти особенности наряду с нелинейностью кинетики лежат в основе механизмов регуляции ферментативных процессов и в итоге определяют динамическое поведение сложной совокупности метаболических превращений в клетке. Мы увидим, что регуляция даже сравнительно простых ферментативных процессов указанными способами приводит к появлению нетривиальных типов динамического поведения. [c.39]

    Для того чтобы протекал ферментативный процесс, необходимо постоянное поступление в активный центр фермента субстратов и удаление продуктов. В растворе скорости этих процессов определяются простыми законами диффузии их можно ускорить или замедлить, изменяя температуру или вязкость растворителя. В клетке ферменты и субстраты могут быть разделены мембраной, и тогда любой фактор, оказывающий влияние на проницаемость мембран, может служить регулятором ферментативного процесса. Так, например, повышение проницаемости мембран митохондрий для жирных кислот под действием карнитина приводит к значительному ускорению процессов р-окисления, В ряде случаев такие регуляторы могут непосредственно связываться с субстратами или ферментом и тем самым изменять их компартментализацию, а в ряде случаев регулятор может взаимодействовать с другими структурами клетки и, изменяя проницаемость для субстратов или продуктов, вызывать дистанционную регуляцию ферментативных процессов. К числу последних могут относиться как внутриклеточные метаболиты (например, жирные кислоты, изменяя проницаемость мембран митохондрий для Н+ и Са +, могут влиять на сопряжение дыхания с фосфорилированием), так и специфические регуляторы, например, гормоны и медиаторы. [c.35]

    Скорость или степень превращения углеводного субстрата в полимерный продукт можно увеличить путем повышения удельной активности участвующих в синтезе ферментов, изменения механизмов регуляции синтетического процесса или увеличения доступности предшественников полисахарида. Число ферментативных стадий биосинтетического процесса зависит от сложности данного полимера, и любая попытка увеличить выход полимера должна быть основана на ясном представлении о данном биосинтетическом пути и механизмах его метаболического контроля. В настоящее время выход увеличивают путем отбора случайных мутантов. Скорость потребления субстрата можно повысить путем дупликации генов, продукты которых участвуют в формировании механизмов поглощения, но такой способ не обязателен, если у данного организма имеется несколько путей транспорта для каждого субстрата. [c.232]

    Вместе с тем математический аппарат, используемый в большинстве случаев при моделировании микробиологических процессов, относится к типу уравнений движения и заимствован из области кинетики химических и биохимических (ферментативных) процессов. Это в принципе не вызывает возражений, так как именно кинетика огромного множества отдельных, но связанных в систему реакций определяет биологические процессы. Вместе с тем, используя для описания процесса, протекающего на популяционном уровне, математический аппарат, созданный для описания процессов, характерных для молекулярного уровня организации биосистемы, следует помнить о том, что в этом случае принципиально невозможно ожидать получения математической модели роста популяции, которая бы давала рациональное истолкование всей наблюдаемой специфики ее поведения. Безусловно останутся явления, особенно относящиеся к вопросу регуляции на популяционном уровне, которые затруднительно интерпретировать в понятиях молекулярного уровня. [c.19]

    После точного, чувствительного и стандартизированного определения активности фермента можно переходить к выяснению вопроса о том, подвергается ли фермент одному или нескольким процессам регуляции метаболизма. Показано, что у бактерий существуют два основных типа регуляции ферментативной активности — аллостерический и ковалентная модификация. [c.406]

Рис. 18.3. Регуляция ферментативной активности с помощью ковалентной модификации. В простейшем виде этот процесс включает участие инактивирующего, или модифицирующего, фермента, который катализирует ковалентное (Е-ьХ- -ЕХ) изменение основного фермента, а также активирующего, фермента, который катализирует обратный процесс (ЕХ->Е-ьХ), восстанавливая тем самым исходную ферментативную активность. Рис. 18.3. <a href="/info/1321839">Регуляция ферментативной активности</a> с помощью <a href="/info/100411">ковалентной модификации</a>. В <a href="/info/1433285">простейшем виде</a> этот процесс включает участие инактивирующего, или модифицирующего, фермента, который катализирует ковалентное (Е-ьХ- -ЕХ) <a href="/info/263144">изменение основного</a> фермента, а также активирующего, фермента, который катализирует <a href="/info/6230">обратный процесс</a> (ЕХ->Е-ьХ), восстанавливая тем самым исходную ферментативную активность.

    В процессе регуляции ферментативной активности путем ковалентной модификации [21] происходит ковалентное связывание лиганда с ферментом, а не простое обратимое, как при аллостерической регуляции. Это ковалентное связывание катализируется другим ферментом, как показано на рис. 18.3. Активный (взаимно превращаемый) фермент превращается в неактивный с помощью другого фермента (инактивирующего), который ковалентно модифицирует первый. Другой фермент (активирующий) катализирует переход фермента в исходное активное состояние путем удаления появившихся ковалентных связей. [c.408]

    В клеточной мембране можно выделить два типа процессов химические и физические. К первым относятся изменение липидного состава, окисление липидов и их удаление на их возможную роль в регуляции цикла впервые было обращено внимание в работах Бурлаковой [10, 19]. К физическим процессам относится изменение фазового состояния липидного бислоя, его текучести, упругости и т. д. Помимо этого в мембране протекает множество ферментативных процессов деятельность ферментов зависит как от липидного состава, так и от фазового состояния клеточной мембраны. Эти белки-энзимы могут играть роль первичных акцепторов сигналов, генерируемых в мембране. [c.143]

    В клетке изменение скорости катализируемых ферментами биохимических реакций может происходить по крайней мере двумя путями. Существует быстрый (действующий в течение секунд или минут) механизм регуляции ферментативной активности, который зависит от изменения каталитической активности индивидуальных молекул фермента. Имеется также несколько более медленный (действующий в течение многих минут или часов) механизм, лимитируемый количеством фермента, которое определяется скоростью процессов его синтеза и распада. Оба эти механизма обычно действуют при посредстве низкомолекулярных соединений, образующихся в клетке как промежуточные метаболиты или проникающие в нее из окружающей среды. В обоих механизмах используется важнейший принцип управления — принцип обратной связи. Прежде чем перейти к рассмотрению того, как этот принцип реализуется в регуляции активности ферментов, напомним несколько общих механизмов изменения скорости ферментативных реакций. [c.10]

    Исследование закономерностей инактивации фермента в процессе реакции представляет специальный интерес, поскольку инактивация фермента может составлять один из механизмов регуляции ферментативной активности. Изучение кинетики и механизма инактивации ферментов составляет одну из задач биокинетики. Выше были рассмотрены закономерности инактивации ферментов, в которых концентрация субстрата постоянна, не является переменной величиной. Однако в большинстве случаев в процессе протекания ферментативной реакции в закры- [c.244]

    Аналогичные условия детально проанализированы при обсуждении субстратной регуляции синтеза простагландинов и свойств консервативно устойчивых ферментативных процессов. [c.324]

    Образованию или расщеплению химических связей каким-либо ферментом предшествует формирование фермент-субстратного (Е8) комплекса. При этом субстрат присоединяется к специфическому участку на ферменте, называемому активным центром. Большинство ферментов проявляет высокую избирательность в отношении связывания субстратов. В сущности, специфичность каталитического действия ферментов в основном зависит от специфичности процесса связывания. Более того, на этой стадии нередко осуществляется и регуляция ферментативной активности. [c.108]

    Родионова Н. А. Растительная клеточная стенка и ее ферментативное расщепление // Обменные процессы и их регуляция у растений и животных. — Саранск, 1980. — С. 63—67. [c.441]

    Способность живых организмов регулировать протекающие в них биохимические процессы, называемая биорегуляцией, сводится, в общем, к регуляции ферментативной активности. Эта регуляция осуществляется различными путями. [c.33]

    Огромное значение для регуляции работы систем биохимических процессов имеет пространственная организация этих систем. Уже в пределах клеток эукариот многие процессы пространственно разобщены, поскольку происходят в различных органеллах. Распределение биохимических процессов по отдельным участкам клеток (компартментализация) будет рассмотрено в 10.4. Уже этот вопрос выходит за рамки собственно биохимии и является в большей мере предметом клеточной биологии. Еще дальше от биохимии отстоят более высокие уровни пространственного разобщения биологических процессов по разным органам многоклеточных организмов. Так, уже говорилось о регуляторной роли эндокринной и нервной систем. Их изучение является в первую очередь предметом физиологии, которая в последние десятилетия превратилась из описательной науки в область знания, прочно опирающуюся на сведения о биохимических и биофизических процессах, протекающих в животных и растениях. Тем не менее, чтобы дать читателю некоторое представление о взаимосвязи физиологических и биохимических процессов, в 10.5 вкратце рассматривается вопрос о биохимических аспектах мышечного сокращения - один из первых физиологических вопросов, в котором такое сложное явление, как превращение химической энергии в сокращение мышц, было в значительной мере осмыслено на основе биохимических концепций, таких, как ферментативный катализ и конформационные переходы. [c.421]

    В пособии (1-е изд.— 1979 г.) рассматриваются современные методы аналитической биохимии, основы препаративной энзимологии, методы изучения кинетики и механизмов регуляции ферментативных процессов, приемы иммобилизации ферментов и иммуноферментного анализа, а также методы, используемые при изучении метаболизма митохондрий и биоэнергетики. [c.2]

    Для разделения антиподов необходимо асимметрическое воздействие вещества или существа, знающего разницу между правым и левым. Зеркальные антиподы были открыты Пастером в 1848 г. Он изучал винную кислоту и установил, что у нее имеются правые и левые формы кристаллов. Сортируя их, Пастер получил чистые антиподы винной кислоты. Он играл роль асимметрического фактора — человек сам хирален и знает разницу между правым и левым. Хиральность существует в живой природе как на молекулярном, так и на более высоких уровнях организаций. Она определяется в конечном счете хиральной регуляцией ферментативных процессов. На рис. 2.12 показаны две формы раковины корненожки Neogloboquadrina pa hyderma. Ракушки, закрученные по часовой стрелке, образуются при температуре, меньшей 7°С, закрученные против часовой стрелки — при более высоких температурах. [c.44]

    Взаимодействие и согласованность течения химических процессов в живых организмах обеспечиваются регуляторными механизмами. У низкоорганизованных животных и растений регуляция ферментативных процессов обеспечивается специально образующимися у них веществами (химические регуляторы), у высших животных и у человека ведущая роль в этом отношении принадлежит центральной нервной системе. Следует, однако, указать, что и у высших животных и у человека также существует регуляция течения ферментативных процессов химическилш веществами. Больше того, в результате эволюционного развития у них появились специальные органы, в которых образуются вещества, поступающие в кровь и доставляемые кровью в различные ткани и органы, где они проявляют свое регуляторное действие. Эти вещества, получившие название гормонов, образуются в железах, обычно не имеющих выводных протоков — в железах внутренней секреции. Горм(зны этих желез поступают непосредственно в кровь. [c.136]

    Наибольший прогресс в Б. в 70-х гг. достигаут при исследовании молекулярных основ энергетич. процессов (П. Митчелл), механизмов регуляции клеточных процессов и установлении роли циклич. аденозинмонофосфата (Е. Сазерленд), а также в разработке осн. положений теории ферментативного катализа (В. Дженкс, Д. Кошланд, А. Е. Браун-штейн и др.) и установлении принципиальных схем обмена в-в (карты метаболизма). [c.76]

    Эту главу мы посвятим рассмотрению гликолиза-процесса., в ходе которого молекула глюкозы, построенная из шести углеродных атомов, расщепляется ферментативным путем, в десяти последовательных реакциях до двух молекул пирувата, содержащих по три углеродных атома. На протяжении этой последовательности реакций значительная часть энергии, высвободившейся из глюкозы, запасается в форме АТР. Гликолиз (от греч. glykys-сладкий и lysis-распад, разложение) изучен лучше других центральных метаболических путей, и потому мы рассмотрим его здесь достаточно подробно в основе функционирования и регуляции этого процесса лежат некие общие принципы, характерные для всех метаболических путей. Мы обсудим здесь также пути, питающие гликолиз, т.е. пути, ведущие к нему от гликогена, дисахаридов и моносахаридов. [c.439]

    Соловьева Б. А., Евтодиенко Ю. В. В сб. Митохондрии, ферментативные процессы и их регуляция (материалы П1 симпозиума на тему Структура и функция митохондрий ). М., Наука , 1968. [c.121]

    Трифосфаты дезоксинуклеозидов синтезируются из простых предшественников при участии разнообразных ферментных систем. Фонд свободных нуклеотидов играет важную роль в общем метаболизме клетки. Известно, например, что, помимо участия в биосинтезе нуклеиновых кислот, они могут вовлекаться в синтез белков, коферментов, углеводов I, 4, 5]. Эти пути их метаболизма уже способны в какой-то мере регулировать биосинтез нуклеиновых кислот и, в частности, ДНК. Однако наиболее эффективная регуляция осуществляется при протекании ферментативных процессов, в ходе которых образуются специфические для ДНК предшественники. К числу таких процессов, в первую очередь, относится образование дезоксинуклеотидов и тиминнуклеотидов. Эти процессы резко активируются в быстрорастущих тканях и служат прямыми показателями интенсивности синтеза самой ДНК. [c.120]

    Механизм обратной связи — способ внутриклеточной регуляции метаболитеских процессов. Механизм обратной связи хорошо виден на прим е реакций биосинтеза яу-риновых я пиримидиновых нуклеотидов. Иллюстрацией положительной офатжй связи могут быть случаи, когда синтез фермента возможен лишь в приЪутстаии соответствующего субстрата, а также хорошо известное явление ферментативной адап--тации. [c.59]

    Регуляция активности ферментов. На активность ферментов могут влиять многие факторы, в частности концентрация субстрата и кофермента, наличие активаторов и ингибиторов, величина pH среды, температура, водная среда, состояние биологических мембран, химическая модификация структуры фермента путем фосфорилирования, протеоли-зом и др. Наиболее простым регуляторным воздействием является концентрация субстрата и кофермента. Если фермент функционирует в области полунасыщения субстрата, то даже незначительные изменения в его концентрации могут привести к существенному изменению скорости биохимической реакции. Изменение концентрации коферментов НАД, НАДФ, ФАД, КоА и др., а также витаминов, входящих в их состав, тоже влияет на скорость ферментативных реакций. Многообразие ферментативных процессов, скорость которых зависит от наличия витаминов, показано на рис. 104. [c.269]

    Превращение органического вещества в организме зависит не столько от его химических свойств, сколько от наличия и соотно-гления в системе определенных ферментов и координации их действия. У высокоорганизованных организмов регуляция обменных ферментативных процессов осуществляется посредством нервной, гормональной и генетической системы. [c.158]

    С некоторыми из этих способов можно познакомиться на примере восьми описанных ниже методик, в которых определяют активность ферментов каждого из шести классов оксидоредуктаз, трансфераз, гидролаз, ли-аз, изомераз и лигаз. Ферменты каждого класса участвуют в регуляторных процессах метаболизма. Методы изучения регуляции ферментативной активности и синтеза ферментов рассматриваются ниже в этой же главе. Все ферменты, активность которых определяют в приведенных здесь методиках, встречаются в клетках широко распространенных диких штаммов Е. oli, например в клетках штамма Крукса (АТСС 8739), штамма W (АТСС 9637) или штамма К-12 (АТСС 14948). [c.395]

    Интересно заметить, что константа ингибирования для фосфата равна 2,5-10" М [96] в личина того же порядка, что и К для пирувата (1,3-10 VI) Примерно одинаковое сродство пируватд карбоксилазы к субстрату и к ингибитору (концентрация которого в клетке подвержена резким изменениям в зависимости от интенсивности и направленности различных ферментативных процессов) может указывать на возможные пути регуляции данного фермента в дрожжах [c.158]

    Какие факторы могут привести к отклонению кинетики ферментативной реакции от уравнения Михаэлиса 2. Опишите случай ингибирования (активации) ферментативной реакции избытком субстрата. Приведите примеры. 3. Какие модели аллостерического взаимодействия ферментов с субстратами вы знаете 4. Почему схема Хилла неудовлетворительно описывает аллостерические эффекты 5. Почему схема (2.33) не описывает аллостерические эффекты 6. Напишите основные уравнения модели Моно-Уаймена-Шанжё. 7.1Сакое значение имеют аллостерические эффекты в регуляции биологических процессов  [c.116]

    Являясь конечным продуктом белкового обмена в живых организмах, мочевина активно участвует в регуляции их водного режима. Наличие такой "обратной связи" индуцируется протеканием процесса биосинтеза мочевины (из NH3 и СО2 в БЛВС печени) по замкнутому, так называемому орнитиновому циклу, состоящему из последовательного ряда ферментативных реакций [2]. [c.110]

    В последние полтора десятилетия в биологии произошли события, повлекшие за собой фундаментальные изменения наших представлений о функционировании самых различных биологических систем. Было обнаружено, что оксид азота - NO, является одним из универсальных и необходимых регуляторов функций клеточного метаболизма [1-12]. Неожиданно оказалось, что газ, и газ токсичный, молекула которого является, к тому же, свободным радикалом, соединением коротко-живущим и легко подвергающимся самым разнообразным химическим трансформациям, непрерывно ферментативно продуцируется в организме млекопитающих, оказывая ключевое воздействие на ряд физиологических и патофизиологических процессов. Оксид азота участвует в регуляции тонуса кровеносных сосудов, ингибирует агрегацию тромбоцитов и их адгезию на стенках кровеносных сосудов, функционирует в центральной и вегетативной нервной системе, регулируя деятельность органов дыхания, желудочно-кишечного тракта и мочеполовой системы. Существуют две стороны проблемы NO в организме млекопитающих. Первая - это образование NO в организме в недостаточных количествах, что приводит к ряду тяжелых последствий (сердечно-сосудистые, инфекционные, воспалительные заболевания, тромбозы, злокачественные опухоли, заболевания мочеполовой системы, мозговые повреждения при инсультах и др.). Другая, и не менее важная, сторона проблемы - продукция в организме избыточных количеств оксида азота. Из-за "вездесущей природы" NO, способного в результате простой диффузии проникать практически через любые биологические мембраны, слишком большой выброс этого медиатора приводит к целому ряду тяжелых патологических состояний. К таким болезням относятся септический шок (остро развивающийся, угрожающий жизни патологический процесс, обусловленный образованием очагов гнойного воспаления в органах и тканях), нейродегенеративные заболевания, различные воспалительные процессы. Поскольку хорошо известно, что генерация эндогенного NO в организме - результат окисления L-аргинина ферментами NO-синтазами, очевидно, что во избежание перепродукции этого соединения необходимо использование ингибиторов NOS. [c.30]


Библиография для Регуляция ферментативных процессов: [c.471]   
Смотреть страницы где упоминается термин Регуляция ферментативных процессов: [c.68]    [c.68]    [c.241]    [c.4]    [c.134]    [c.10]    [c.82]    [c.5]    [c.32]   
Биохимия Издание 2 (1962) -- [ c.136 ]




ПОИСК





Смотрите так же термины и статьи:

Регуляция



© 2024 chem21.info Реклама на сайте