Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление оксида

    II — стадия каталитического окисления оксида серы (IV) до оксида серы (VI) и абсорбции его (переработка в серную кислоту). [c.157]

    Реакция окисления оксида серы (IV) до оксида серы (VI), лежащая в основе процесса контактирования обжигового газа, представляет собой гетерогенно-каталитическую, обратимую, экзотермическую реакцию и описывается уравнением  [c.161]


    Скорость окисления оксида углерода повышается в присутствии небольших количеств влаги. Скорость реакции окисления углерода больше, чем скорость диффузии кислорода, и наоборот, скорость реакции взаимодействия углерода с диоксидом углерода меньше скорости диффузии кислорода. Поскольку основой является реакция окисления, при уменьшении толщины пограничного слоя увеличивается скорость горения. Это и происходит в условня.ч пожара при увеличении скорости воздушных потоков, омывающих поверхности горящих веществ. [c.141]

    Производство серной кислоты включает три стадии получение оксида серы (IV), контактное окисление оксида серы (IV), абсорбцию серного ангидрида (SO3). [c.128]

    Источники выброса газов, содержащих оксиды азота, разнообразны. Эти газы различаются по содержанию в них оксидов азота и других примесей, степени окисления оксидов азота, температуре, давлению и т.д. Газы, содержашие оксиды азота, условно можно разделить на четыре группы  [c.63]

    Равновесие в системе. Константа равновесия реакции окисления оксида серы (IV) равна  [c.162]

    Пространственно-временная самоорганизация гетерогенного каталитического процесса. Одновременное протекание химической реакции и диффузии может привести к образованию периодических по пространству стационарных состояний — диссипативных структур [84—89]. Покажем возможность образования неоднородных стационарных состояний (макрокластеров) на примере механизма реакции окисления оксида углерода на платиновом катализаторе. Математическую модель поверхностной каталитической реакции с учетом поверхностной диффузии будем строить, исходя из следующих предположений [83]. Будем считать, что диффузия адсорбированного вещества X происходит за счет его перескока на соседние свободные места Z. Схема расположения занятых мест X и свободных мест Z на поверхности катализатора показана на рис. 7.10 (для наглядности взят одномерный случай). Пусть X, г — степени покрытия X та X соответственно, ро — вероятность перескока молекул с занятого места на свободное (микроскопическая константа), е — характерный размер решетки. Тогда скорость изменения г] = Ах М степени покрытия X в сечении [c.306]

    Закоксованный катализатор из отпарной зоны Р—1 по наклонному катализаторопроводу поступает в зону кипящего слоя регенератора Р-2, где осуществляется выжиг кокса в режиме полного окисления оксида углерода в диоксид. Регенерированный катализатор по нижнему наклонному катализаторопроводу далее поступает в узел смешения лифт—реактора. Воздух на регенерацию нагнетается воздуходувкой. При необходимости он может нагреваться в топке под давлением. Дымовые газы через внутренние двухступенчатые циклоны направляются на утилизацию теплоты (на электрофильтры и котел —утилизатор). [c.135]


    Таким образом, этот механизм представляет собой цепной радикальный процесс, включающий стадии инициирования, развития и обрыва цепи. Особенность его — существенная роль оксида у1 лерода в инициировании окисления оксида азота и образования озона. [c.34]

    Воздух на регенерацию катализатора вводится в регенератор через воздушные трубчатые коллекторы 10. Выжиг кокса проводится Б кипящем слое в режиме практически полного окисления оксида углерода в диоксид. [c.25]

    В качестве примера приложения закона действия масс можно привести уравнение зависимости скорости реакции окисления оксида азота (II) [c.174]

    При построении лингвистического описания, формализующего связь между параметрами, эксперт сделал предположение, что свойства, определяющие активность катализатора в реакции окисления оксида углерода, являются независимыми. Поэтому связи 1=1=1) в полученном описа- [c.112]

    Расчеты показывают, что степень использования тепла реакции окисления оксида азота до диоксида низка. Кроме того, эксплуатационные показатели технологической схемы чувствительны к изменению нагрузки, и при работе с нагрузкой, отличающейся от оптимальной, себестоимость продукции заметно увеличивается. Причиной этого является наличие теплового рецикла по потоку воздуха, подаваемого от компрессора через подогреватель воздуха к контактному аппарату. [c.215]

    Полнота регенерации катализатора, т. е. содержание в нем остаточного кокса, определяется исходной закоксованностью и условиями регенерации. Наиболее полная реализация всех свойств цеолитсодержащих катализаторов осуществляется при содержании остаточного кокса менее 0,05—0,10%, что достигается путем поддержания высокой температуры регенерации (650—700 °С), повышенных давлений в регенераторе, полным окислением оксида углерода в диоксид, специальным подбором конструкции регенератора. [c.110]

    По стехиометрическому уравиению для окисления аммиака необходимо иметь в составе воздушно-аммиачной смеси 1,25 моль О2 на 1 моль NH3. Для увеличения выхода оксида азота и повышения скорости реакции окисления аммиака практически берут соотношение 02.NH3 = 1,7ч-2,0. Это отвечает содержанию аммиака в воздушно-аммиачной смеси примерно 10—12%. Кислород необходим не только для окисления аммиака, но и для дальнейшего окисления оксида азота до диоксида. Зависимость выхода оксида азота от соотношения концентраций кислорода и аммиака в исходной аммиачно-воздушной смеси показана на рис. 35 для платинового катализатора под атмосферным давлением. [c.102]

    Закоксованный катализатор из отстойной зоны реактора и спускных стояков циклона проходит десорбер 5 и по верхнему наклонному катализаторопроводу поступает в зону кипящего слоя регенератора 6, где происходит выжиг кокса в режиме практически полного окисления оксида углерода в диоксид. Регенерированный катализатор по нижнему наклонному катализаторопроводу стекает в узел смешения прямоточного лифт-реактора. Воздух на регенерацию нагнетается воздуходувкой. При необходимости воздух может нагреваться в топке под давлением 9. Дымовые газы регенерации проходят отстойную зону регенератора 7 и через двухступенчатые внутренние циклоны направляются на утилизацию теплоты (поз. 4 на рис. 2.17). [c.117]

    Окислительная регенерация закоксованных катализаторов представляет собой совокупность химических реакций, происходящих при взаимодействии кислорода с коксом, в результате которых кокс удаляется в виде газообразных продуктов окисления - оксидов углерода, паров воды, а в некоторых случаях и оксидов серы. К настоящему времени накоплены обширные сведения, указывающие на то, что окисление кокса на катализаторах протекает с образованием и разложением кислород-угле-родных комплексов, т. е. по стадийному механизму. В то же время кинетические закономерности отдельных продуктов окисления существенно различны для разных катализаторов. Это объясняется различием в свойствах удаляемого кокса, условиями выжига (содержание кокса, температура и состав газовой фазы). Кроме того, в большинстве случаев значительное влияние на закономерности удаления кокса оказывает поверхность регенерируемых катализаторов. [c.14]

    Другае авторы связывают изменение активности алюмохромовых катализаторов со степенью дегидратации поверхности, которая также меняется как в процессе дегидрирования бутана, так и при окислительной регенерации [113, 114]. В процессе дегидрирования Сг " восстанавливается. Пары воды, образующиеся при восстановлении, вызывают обратимое отравление поверхности [95, 113]. Окисленная поверхность алюмохромового катализатора является более чувствительной к отравляющему действию воды, чем восстановленная . Полная дезактивация восстановленного оксида хрома(П1) парами воды наступала при покрытии 15% поверхности катализатора, а полное отравление окисленного оксида хрома(П1) отмечено уже при экранировании 2% поверхности [c.49]


    Окисление оксида азота до диоксида  [c.100]

    В 1746 году был разработан камерный метод производства, в котором сера в смеси с нитратом калия сжигалась в свинцовых камерах, причем оксид серы (VI) и оксиды азота растворялись в воде на дне камеры. В последующем в камеры стали вводить пар, и процесс производства превратился в непрерывный. В начале XIX века серу сжигали в печах, а оксиды азота получали отдельно разложением нитрата калия серной кислотой. В начале XX века в установку была включена специальная башня для улавливания оксидов азота, что повысило интенсивность камерного процесса. В последующем свинцовые камеры были заменены башнями с кислотоупорной насадкой. Тем самым камерный метод производства серной кислоты, сохранив принцип окисления оксида серы (IV) в оксид серы (IV), трансформировался в башенный метод, существующий в настоящее время. С 1837 г. в качестве сырья вместо серы стал использоваться железный колчедан. [c.152]

    Окисление оксида и абсорбция диоксида азота водой осуществляются практически одновременно в одной и той же аппаратуре. Однако закономерность этих процессов целесообразно рассмотреть раздельно. [c.102]

    Окисление оксида азота до диоксида является второй стадией производства азотной кислоты  [c.103]

    Однако увеличение потерь катализатора и расхода энергии с повышением давления является серьезным тормозом в развитии этого способа. В связи с этим в последнее время получают распространение схемы, в которых контактное окисление аммиака проводят при более низком давлении (до 4-10 Па), чем окисление оксида азота (до 12-10 Па). Для современных схем характерны большая мощность одной технологической нитки (380— 400 тыс. т/год) и возможно более полное использование энергии отходящих газов и низкопотенциальной теплоты в технологических целях для создания автономных энерготехнологических схем. Комбинированная схема производства разбавленной азотной кислоты под давлением 0,4—1 МПа приведена на рис. 38. Сжатый центробежным компрессором и нагретый воздух (4,2-10 Па, 200°С) поступает в рубашку совмещенного с паровым котлом контактного аппарата. Далее воздух поступает в смеситель, где смешивается с очищенным и разогретым аммиаком. Пройдя тонкую очистку в фильтре, встроенном в контактный аппарат, воздушно-аммиачная смесь поступает на двухступенчатый контакт, состоящий из трех платиновых сеток и слоя неплатинового ката- [c.107]

    Пример 10. Процесс окисления оксида азота (И) до диоксида сопровождается образованием димера N2O4. Рассчитать степень полимеризации ЫОг для газовой смеси, содержащей 5% (об.) NO2 в исходном газе, если давление газа составляет 0,1 МПа, а температура 40°С. Значение константы равновесия /Ср = = Рша/PniOi — 0.435. [c.38]

    Конкретная технологическая схема производства зависит от вида сырья, особенностей каталитического окисления оксида серы (IV), наличия или отсутствия стадии абсорбции оксида серы (VI). [c.157]

    Реакторы или контактные аппараты для каталитического окисления оксида серы (IV) по своей конструкции делятся на аппараты с неподвижным слоем катализатора (полочные или фильтрующие), в которых контактная масса расположена в 4-5 слоях, и аппараты кипящего слоя. Отвод тепла после прохождения газом каждого слоя катализатора осуществляется путем введения в аппарат холодного газа или воздуха, или с помощью встроенных в аппарат или вынесенных отдельно теплообменников. [c.168]

    На практике, при обжиге колчедана печной газ содержит 13—14% оксида серы (IV), 2% кислорода и около 0,1% оксида серы (VI). Так как в печном газе должен быть избыток кислорода для последующего окисления оксида серы (IV), его состав корректируют, разбавляя воздухом до содержания оксида серы (IV) [c.160]

    Для описания скорости окисления оксида серы (IV) в оксид серы (VI) на ванадиевом катализаторе при неподвижном слое катализатора предложены различные кинетические уравнения. К ним относятся, например, уравнение 13.7, связывающее скорость реакции со степенью превращения оксида серы (IV), константой скорости реакции, константой равновесия и давлением газа  [c.166]

    Скорость окисления оксида серы (IV). От скорости окисления зависит количество оксида серы (IV), окисляющееся в единицу времени, и, следовательно, объем контактной массы, размеры реактора и другие характеристики процесса. Организация этой стадии производства должна обеспечить возможно более высокую скорость окисления при максимальной степени контактирования, достижимой в данных условиях. [c.164]

    Энергия активации реакции окисления оксида серы (IV) кислородом в оксид серы (VI) весьма велика. Поэтому, в отсутствии катализатора реакция окисления даже при высокой температуре практически не идет. Применение катализатора позволяет снизить энергию активации реакции и увеличить скорость окисления в соответствии с зависимостью для константы скорости  [c.164]

    Кт активатор носитель Предполагается, что процесс окисления оксида серы (IV) на этих катализаторах идет через стадию диффузии реагентов к поверхности катализатора, на которой образован комплекс оксида ванадия (V) с активатором, сорбции реагентов на катализаторе с последующей десорбцией продукта реакции (оксида серы (VI))  [c.165]

    При окислении оксидом марганца (IV), манганатом калия К-,Д п04 или перманганатом калия КМПО4 в кислой среде, т.е. в присутствии серной, разбавленной соляной, азотной или других кислот, происходит восстановление марганца до двухзарядного катиона, образующего соответствующие соли Мп804, МпСЛд, Mп(NOз)2 и т.д. по схс мам  [c.149]

    КИМ образом, скорость процесса окисления оксида серы (IV) зависит от двух величин, изменяющихся с ростом температуры в противоположном направлении. Вследствие этого кривая зависимости скорости окисления от температуры должна проходить через максимум. Из уравнения 13.7 также следует, что скорость [c.166]

    Таким образом, противоречие между кинетикой и термодинамикой процесса окисления оксида серы (IV) достаточно успешно снимается конструкцией и температурным режимом работы контактного аппарата. Это достигается разбивкой процесса на стадии, каждая из которых отвечает оптимальным условиям протекания процесса контактирования. Тем самым определяются и начальные параметры режима контактирования температура 400— 440°С, давление 0,1 МПа, содержание оксида серы (IV) в газе 0,07 об. долей, содержание кислорода в газе 0,11 об. долей. [c.168]

    Производство разбавленной азотной кпслок.г состоит из трех стадий каталитическое окисление аммиака в ОКСИД азота (И) окисление оксида азота (П) в оксид азота (IV) абсорбция оксида азота (IV) водой с образованием кислоты. [c.159]

    Разработаны специальные модификации катализаторов и промоторов, позволяющие осуществлять в регенераторе окисление оксида углерода в диоксид, улавливание оксидов серы из дымовых газов регенерации и последующее их восстановление в сероводород в зоне крекинга, повышать на 3—4 пункта октановое число (и. м.). У катализаторов последних модификаций резко выросла способность сохранять каталитические свойства при осаждении больших количеств металлов из сырья. Так, на обычных промышленных цеолитсодержащих катализаторах при суммарном содержании никеля и ванадия 0,5% конверсия сырья снижается более чем в 2 раза, резко ухудшается селективность кре-КИН13, повышается выход кокса, сухого газа и водорода. На специально приготовленных цеолитсодержащих катализаторах в этих же условиях конверсия сырья практически не снижается, селективность изменяется незначительно. [c.115]

    При окислении азотной кислотой она раскисляется до оксидов азота (N0 или N2O3). Экономичность производства во многом зависит от возможности утилизации этих оксидов и регенерации непревращенной азотной кислоты. Первая задача решается окислением оксидов азота воздухом в водном или азотнокислотном растворе с образованием азотной кислоты  [c.354]

    Пример 11. При окислении оксида серы (IV) в оксид серы (VI) в производстве серной кислоты по контактному способу в форкон-тактный аппарат поступает сернистый газ состава [% (об.)] SO2—11 О2—10 N2 — 79. Процесс окисления осуществляется при / = 570°С и Я = 1200 кПа, Степень окисления 70%. [c.39]

    С уммнруя два последних уравнения, получим уравнение реакции соединения веществ А и В с образованием АВ. Вещество К, входившее первоначально в реакцию, в результате всех последовательно протекающих процессов выходит из реакции в первоначальном виде и количество. Таким образом, вещество К является катализатором этой реакции. Примером подобной каталитической реакции является реакция окисления оксида серы (IV) в оксид (V ) с помощью оксида азота (И). Реакция диоксида серы с кислородом [c.96]

    Мелик-Ахназаров Т.Х., Залюбовская Т.П., Алиев P.P., Спивак З.И. Катализаторы окисления оксида углерода и их применение на установках каталитического крекинга. Тематические обзоры. Сер. Переработка нефти. - М. ЦНИИТЭнефтехим, 1989. - №1.. 80 с. [c.153]

    При переработке нитрозных газов в системах, работающих под атмосферным давлением, с использованием воздушно-аммиачной смеси (10—127о ЫНз) при обычной температуре абсорбции N02 можно получить только разбавленную 47—50%-иую азотную кислоту. Снижением температуры абсорбции можно сместить равновесие в сторону образования более концентрированной азотной кислоты, однако это дает незначительный результат вследствие уменьшения скорости реакции взаимодействия диоксида азота с водой. Повышение давления до 1 МПа позволяет получать СО—62%-ную азотную кислоту. При переработке аммиачно-воздушной смеси в азотную кислоту под атмосферным давлением наиболее медленной стадией процесса является окисление оксида а. юта до диоксида. Поэтому требуются большие объемы окислительно-абсорбционных башен. Применение в производстве азотной кислоты воздуха, обогащенного кислородом, или чистого кислорода позволяет получать нитрозные газы с повышенным содержанием оксида азота и увеличить скорость реакции окисления N0 в N02. [c.105]

    Степень окисления оксида серы (IV) возрастает с увеличением времени контактирования, приближаясь к равновесию по затухающей кривой (рис. 13.8). Следовательно, время контактирования должно быть таким, чтобы обеспечивать достижение равновесия в системе. Из рис. 13.8 следует, что чем выше температура, тем скорее достигается равновесие (Тх < Хг), но тем меньше равновесная степень превращения (Хг < Ха при Т > Га). Таким образом, выход оксида серы (VI) зависит как от температуры, так и от времени контактирования. При этом, для каждого врёмени контактирования зависимость выхода от температуры выражается соответствующей кривой, имеющей максимум. Очевидно, что огибающая эти максимумы линия АА (рис. 13.9) представляет кривую оптимальных температур для различного времени контактирования, близкую к равновесной кривой. [c.163]


Смотреть страницы где упоминается термин Окисление оксида: [c.63]    [c.111]    [c.103]    [c.104]    [c.153]    [c.157]    [c.162]    [c.167]    [c.167]   
Смотреть главы в:

Технология связанного азота  -> Окисление оксида




ПОИСК







© 2024 chem21.info Реклама на сайте