Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Золото Сочетания

    Прочие виды коммунального потребления СНГ. В коммунальной сфере имеется масса мелких потребителей СНГ мастерские и ателье по ремонту и пошиву одежды, где производят глажение или прессование гаражи и механические мастерские, где СНГ используют для резки, пайки, лужения металла молочные и маслобойни, где промывают и стерилизуют бутылки из-под молока и сепараторы, для чего используют пар и горячую воду, получаемые с помош,ью СНГ портативные подогреватели воздуха, работающие на СНГ, часто применяют для устройства в холодное время года воздушной завесы в сочетании с завесой из полиэтиленовой пленки для подъездов крупных зданий. СНГ используют для выдувания стекла при производстве и ремонте лабораторной стеклянной посуды ювелиры, серебряных и золотых дел мастера для изготовления, отделки и ремонта изделий из драгоценных металлов паяльщики, лудильщики и водопроводчики для стыковки медных и свинцовых линий зубные техники для производства и ремонта зубных протезов и другие мелкие кустарные потребители. [c.213]


    Один метод локализации со специфической физиологической активностью был позаимствован нз ПЭМ. Этот метод меток поверхности клетки, который, будучи применен к образцам для РЭМ, приводит к образованию на поверхности клетки морфологически различаемых или аналитически идентифицируемых структур. Такие методики в сочетании с растровой электронной микроскопией высокого разрешения позволяют изучать природу, распределение и динамические свойства антигенных и рецепторных состояний на поверхности клеткн. Методы нанесения меток на поверхность клетки в общем случае достаточно сложны и включают процедуры иммунохимической и биохимической очистки. Подробные ссылки на них можно найти в работах [359—361], но сущность методик состоит в следующем. Для крепления антител в определенных антигенных состояниях на поверхности клетки используются стандартные иммунологические процедуры. Хитрость состоит в том, чтобы модифицировать антитела таким образом, чтобы они также несли морфологически различимую метку, такую, как латексные шарики или сферы из двуокиси кремния, распознаваемый вирус, как, например, вирус табачной мозаики, или один из Т-четных фагов, как показано на рис. 11.18, илн белковая молекула известных размеров, как ферритин или гемоцианин. В работе [362] (рис. 11.19) использовались гранулы золота, которые имеют большой коэффициент вторичной электронной эмиссии. Одна часть антитела имеет средство для специфичного антигенного закрепления на поверхности клетки, в то время как другая часть несет морфологически различимые структуры. В настоящее время иммунологические методы достигли такого уровня, когда они не могут быть использованы для изучения как качественных, так и количественных характеристик поверхности клетки [363, 364]. [c.244]

    Химические свойства таллия в некоторых отношениях напоминают свойства тяжелых металлов (свинец, серебро, золото), в других — свойства щелочных металлов [41, 143, 145—148, 610]. Сочетание в одном элементе столь резко различных свойств дало основание назвать таллий загадочным [41] и даже парадоксальным металлом [18, 504]. По этому поводу небезынтересно привести слова Дюма [84, 413]  [c.10]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]


    Использование хиральных никелевых катализаторов в реакциях кросс-сочетания втор-алкильных реактивов Гриньяра ведет к асимметричным продуктам с небольшими оптическими выходами аналогичные результаты получены и при синтезе несимметричных биарилов (схемы 365, 366) [425, 426]. Сочетание лигандов в результате восстановительного элиминирования наблюдалось и в случае комплексов золота, платины, родия и никеля (схемы 367— 371) [427—431]. [c.350]

    Для фотометрического определения золота применяют неорганические и органические реагенты. Последние используют более часто благодаря их явным преимуществам наряду с высокой чувствительностью, они более селективны, особенно в сочетании с экстракцией или соосаждением. [c.137]

    Чувствительность определения повышают сочетанием благоприятных условий облучения с последующим радиохимическим выделением изотопа Аи. Так, чувствительность определения золота без разложения образца составляет 3-10 г, с предварительным выделением золота соосаждением с теллуром — 3-10" г, а с радиохимическим выделением — 1-10 г [328]. [c.186]

    Наиболее распространенными методами определения золота в металлах и металлоидах являются физико-химические (табл. 38). Современная промышленность предъявляет высокие требования к чистоте продуктов, поэтому часто необходимо определять золото с чувствительностью 10" —10 %, что может быть достигнуто только сочетанием надежных методов выделения и концентрирования золота с высокой чувствительностью и селективностью определения. [c.209]

    Для электропроводных стеклоэмалей (проводниковых и резистивных) применяют наполнители на основе благородных металлов, выдерживающих высокотемпературную обработку при вжигании золото, платину, серебро, палладий в различных сочетаниях друг с другом. При наличии малых зазоров и электрического поля серебро можно применять только в сочетании с палладием, присутствие которого позволяет снизить электродиффузионную подвижность серебра. [c.61]

    Зеркалом называют оптический элемент с полированной поверхностью, образующий требуемые световые потоки или изображения путем отражения падающих на него лучей. Зеркала изготавливают из металлов (серебро, алюминий, золото, хром, никель и др.) или путем напыления пленок из этих металлов на твердые материалы (стекло, керамику, сталь и т. д.). Зеркала могут выполнять те же функции, что и линзы, в частности на их основе могут создаваться зеркальные объективы, а в сочетании с линзами получают зеркально-линзовые объективы. В некоторых случаях используют полупрозрачные зеркала, частично отражающие и пропускающие световое излучение. [c.230]

    Изменение поверхностного состава в результате роста кристаллов можно предсказать на основе термодинамических моделей дисперсных биметаллических систем [38—40]. Данный эффект наблюдается даже для гомогенных систем, таких как никель— медь [41, 42] и никель — золото [43], и поэтому нет ограничений для комбинаций металлов, не обладающих взаимной растворимостью, подобных сочетаниям рутений — медь или осмий — медь. Изменения в поверхностном составе биметаллических кристаллитов просто отражают стремление металла с наименьшей поверхностной энергией концентрироваться на поверхности. Это обогащение поверхности усиливается с уменьшением размера кристалла [38—40], даже для маленьких кристаллитов (например 1, 2 нм), когда может происходить поверхностная сегрегация [38], существенно влияющая на катализ. Последние работы показали, что хемосорбция изменяет поверхностный состав, и исследования направлены на изучение поверхностного состава в зависимости от условий катализа [44—45]. [c.22]

    Атомно-абсорбционный метод по этой же причине применяют в не столь массовом масштабе, как он того заслуживает. Метод внедрен в золотодобывающей промышленности для анализа растворов, особенно цианистых. Для концентрирования золота часто проводят предварительную экстракцию развиваются и методы анализа твердых порошковых проб, особенно с графитовой кюветой и другими непламенными атомизаторами. Определение золота атомно-абсорбционным методом стало обычным для этой цели разработан анализатор Золото-1 . Применяется атомная абсорбция и в сочетании с пробирным методом концентрирования золота и серебра. Атомно-абсорбционный метод получил полное признание и в других подотраслях, например в редкометаллической промышленности. [c.149]

    Малая избирательность реагентов, применяемых для определения платиновых металлов и золота, часто вызывает необходимость предварительного отделения определяемого элемента от сопутствующих ему металлов. В ходе анализа сложных материалов, содержащих все благородные металлы, последние, обычно, концентрируются совместно на одной из стадий анализа. Поэтому часто вначале прибегают к групповому разделению, к отделению друг от друга нескольких металлов, наиболее близких по химическим свойствам, а затем ищут пути разделения отдельных элементов. Для группового разделения используют различия в окислительно-восстановительных свойствах благородных металлов. Окислители (броматы, хлор) служат для отделения осмия и рутения от остальных благородных металлов. Восстановители (каломель, хлористую медь) применяют для отделения платины, палладия и золота от родия и иридия. Наиболее частыми сочетаниями металлов, получаемыми в результате группового разделения, являются осмий и рутений платина, палладий и золото родий и иридий. Для группового разделения, а также для отделения металлов друг от друга наряду с химическими применяют хроматографические и экстракционные методы. [c.218]


    Упомянутые вьппе простые цианистые электролиты дают красивое покрытие известного всем золотого цвета. Если же вводить в электролит небольшие количества особых присадок, то можно получать позолоту и других цветов и оттенков. Так, в присутствии меди получаются розовые покрытия, в присутствии никеля или олова-белые, а медь в сочетании с никелем придает покрытиям красный цвет. Вводя в раствор палладий, можно получить позолоту цвета загара , в то время как серебро и цинк окрашивают покрытия соответственно в зеленый и сиреневый цвет. При желании можно получить коричневое и даже черное золотое покрытие... [c.16]

    На рис. 6-92 показан дисковый затвор для сверхвысоковакуумных устройств, в котором для уплотнения могут применяться расплавляемые металлы (золото, серебро, олово, индий, медь), при.меняющиеся в сочетании с порошковым наполнителем из тугоплавкого металла. [c.349]

    Сочетание ионообменного обогащения с обычным спектральным анализом для обнаружения и определения следовых количеств компонентов минералов и горных пород также имеет практическое значение [48, 165]. Анионообменный метод применяли, нанример, для обнаружения золота и платиновых металлов в силикатных породах, когда содержание этих элементов столь мало, что их невозможно обнаружить прямыми спектральными методами [22]. [c.268]

    Отсюда Бэкон делает вывод, что можно искусственно приготовить металлы, подражая природе. При этом для получения золота следует лишь применять особо чистые ртуть и серу в совершенных отношениях. Однако Бэкону было известно из литературы и из собственного опыта, что все усилия приготовить золото из ртути и серы или из их сочетания оказались тщетными. Ка- [c.108]

    Окраска коллоидных растворов. В результате избирательно о поглощения света (абсорбции) в сочетании с дифракцией образуется та или иияя окраска коллоидного раствора. Опыт показывает, что большинство коллоидиых (особенно металлических) растворов ярко окрашено в самые разнообразные цвета, начиная от белого и кончая совершенно черным, со всеми оттенками цветового спектра. Так, золи АзгЗз имеют ярко-желтый, ЗЬгЗз — оранжевый, Ре(ОН)з — красновато-коричневый, золота — ярко-красный цвет и т. п. [c.297]

    Здесь следует сказать также о солярке , которую мастера серебряного и золотого дела применяли (иногда в сочетании с бурой) в качестве флюса при переплавке отходов своей работы. В 1785 г. Д. Ладыгин передал акад. Георги образец солярки с пояснением, что готовят ее из тех соляных глыб , которые появляются около старых, подтекаюпгих мыловаренных котлов, когда подмыльный щелок попадает на золу. Проведя анализы и пробные варки, Георги нашел, что из уваренного досуха под-мылья легко приготовить настоящую солярку , содержащую очень много поваренной соли. Здесь уместно вспомнить весьма давние сведения о применении русскими ювелирами мыла, золы мыла и варахи . [c.174]

    Определение. Качественно Р. обнаруживают в виде HgjNH2 l, HgS, а также атомно-абсорбционным, эмиссионным спектральным, фотометрич. и др. методами. Гравиметрически Р. определяют в виде металла, HgS, Hg2 l2, перйодата Hg5(IOg)2. Пробу руды разлагают при нагр., Р. отгоняется в присут. восстановителя (порошок Fe илн Си) под шубой из ZnO. Образующуюся Р. собирают на холодной золотой пластинке, к-рую по окончании анализа промывают и взвешивают. При низком содержании Р. в рудах используют кислотное разложение руд с добавлением фторида для растворения кварца и силикатов, содержащих Р. в высокодисперсном состоянии затем проводят концентрирование путем отделения примесей др. элементов экстракцией разл. комплексных соединений Р. (галогенидов, роданидов, дитиокарбаматов и др.). При прокаливании и сплав-ле.нии рудных концентратов и соединений Р. с содой Р. полностью удаляется в виде металла. Для подготовки аналит. пробы используют сочетание экстракции с термич. восстановлением и отгонкой Р. подготовленную пробу можно анализировать любым из перечисленных выше методов. Термич. восстановление используют также для качеств, обнаружения Р. даже при низких ее концентрациях. При фотометрич. определении Р. в качестве реактива используют 1-(2-пиридилазо)-2-нафтол, позволяющий определять микрограммовые кол-ва. Следы Р. также м. б. определены при помощи дитизона, используемого как гри фотометрич., так и при титриметрич. определении. [c.279]

    Комплекс (от лат. omplexus — сочетание, обхват) — см. Комплексные соединения. Комплексные соединения (координационные соединения) — соединения, или ионы, которые образуются в результате присоединения к данному иону (или атому), называемому комплексообразователем, нейтральных молекул или других ионов, называемых лигандами (аддендами). К. с. мало диссоциируют в растворе (в отличие от двойных солей). К. с. могут содержать комплексный малодиссоциирую-щий анион [Fe( N)oP , комплексный катион [Ag(NH.i)a]+ либо вообще не диссоциировать на ионы (соединения типа неэлектролитов). К. с. разнообразны и многочисленны. Они применяются в химическом анализе, в технологии при получении ряда металлов (золота, серебра, металлов платиновой группы и др.), для разделения смесей элементов, напр, лантаноидов. К. с. играют большую роль в жизнедеятельности организмов напр., гемоглобин, хлорофилл являются комплексными соединениями. См. также Координационная теория, Внутрикомплексные соединения. [c.69]

    КОСТЬ. Как известно, подобными свойствами обладают благородные металлы. Своеобразными эталонами химической стойкости являются принадлежащие к этому классу металлов золото и платина, растворяющиеся только в царской водке (смесь HNO3 и НС1), одном из самых разрушительных для металлов реагенте. Хотя медь не относится к благородным металлам, многие ее механические свойства (пластичность, ковкость) и достаточно высокая коррозионная устойчивость в сочетании с доступностью и дешевизной обеспечили ей ведущее место при изготовлении монет для мелких расчетов внутри страны, в то время как монеты из благородных металлов использовались главным образом для международных платежей. Следует отметить, что все три металла практически всегда использовались для изготовления монет в виде сплавов с добавками олова, сурьмы, цинка, свинца и некоторых других металлов. [c.161]

    Медь может бьггь расплющена в тончайшие листки (поталь), которые иногда применяют для имитации позолоты или для художественной отделки как самостоятельно, так и в сочетании с позолотой и серебрением. Медные сплавы часто применяют для имитации золота (табл. 18). [c.132]

    Мейнке [1225] отмечает высокую чувствительность активационного определения золота по сравнению со спектральными, фотометрическими и амперометрическими методами. Он более об ьективен, чем пробирный анализ, а при низких содержаниях золота (меньше 0,5—1 г/т) и более точен [321]. Эти обстоятельства в сочетании с быстротой и простотой метода способствовали его применению в контроле производства, при анализах золы растений, почв, пород и рудоносных кварцевых жил [328]. [c.190]

    Золото приходится определять в природных и промышленных Объектах самого разнообразного происхождения. Как правило, большие количества золота определяют гравиметрическим методом (см. главу 4), не утратившим для этих целей своего значения. Малые количества золота (10-4—10-10%) определяют современными физическими и физико-химическими методами, в частности радио-активационным, спектральным, полярографическим, флуоримет-рическим, фотометрическим и другими. В сочетании с методами отделения и концентрирования золота — экстракцией, хроматографией, соосаждением и другими — эти методы позволяют надежно определять золото с высокой чувствительностью. Физические и физико-химические методы определения золота описаны в главах 6—10, методы отделения и концентрирования золота приведены в главе 3. [c.196]

    Начиная с середины прошлого столетия, после тог как русский ученый Б. С. Якоби открыл процессы гальва нопластики и гальваностегии, старые способы золоченил почти вышли из употребления. Гальванический процесс не только производительнее, он позволяет придать золотому покрытию различные оттенки. Добавка в золотой электролит небольшого количества цианистой меди придает покрытию красный оттенок, а в сочетании с цианистым серебром — розовый с помощью одного цианистого серебра можно получить зеленоватый оттенок золотых покрытий. [c.234]

    Уже давно были исследованы каталитические свойства металлов, которые позволяли проводить реакцию гидрогенолиза сернистых соединений. К таким металлам относятся скандий, титан, ванадий, хром, марганец, железо, кобальт, никель, медь, цинк, иттрий, цирконий, молибден, рутений, родий, палладий, серебро, кадмий, лантан, гафний, тантал, вольфрам, рений, осьмий, иридий, платина, золото, ртуть, актиний, торий, уран. Наиболее часто в промышленных процессах гидроочистки щ)имвняются соединения металлов групп У1А и железа, сочетание окислов и сульфидов кобальта и молибдена, сульфидов никеля и вольфрама. [c.2]

    Развитие газохроматографических методов и расширение областей их применения продолжается и в настоящее время, причем все более важное значение в газовой хроматографии приобретают комбинированные или гибридные методы, основанные на сочетании двух и более методов. На перспективность совместного использования химических и физических методов обратил внимание еще Оствальд [3], который писал Если разделение не может быть осуществлено непосредственно или при помощи физических методов, то перед нами наиболее общий случай путем превращения разделенных веществ в другие химические соединения достигают такого их состояния, которое ведет к выделению новой фазы, содержащей нужное вещество и позволяющей механическое отделение . В дальнейшем идею сочетания химического и физических методов разрабатывали в аналитической химии Золотов [4] и Сиггиа [5], в газовой хроматографии — Эттре [6] и другие авторы [7, 8]. [c.6]

    Нами совместно с агролабораторней совхоза Золотая балка (зав. агролабораторией Б. Д. Деменкова) испытывались различные дозы далапона в сочетании с перекопкой почвы в рядах. Почва совхоза — выщелоченный чернозем на аллювиальном суглинке. Виноградник— орошаемый. [c.272]

    Поставив этот вопрос, Бэкон перечисляет и обсуждает возможные источники для получения ртути и серы в их сочетании. Он называет растительные, животные, сложноминеральные вещества и спирты, но отвергает все эти источники получения ртути и сульфура и в заключение говорит Мы устраняем также мысль брать в отдельности оба начала, т. е. ртуть и серу, потому что не знаем нужного отношения, и, кроме того, найдем тела, в которых оба начала уже соединены в правильном отношении, сгущены и связаны по надлежащим правилам Бэкон, видимо, намекает на благородные металлы — золото и серебро, в которых ртуть и сера, по его теории, соединены друг с другом в нужной пропорции Скрой же хорошо эту тайну золото — вещество совершенное и мужское, без излишка и недостатка (ртути или серы). Если бы оно совершенствовало сплавленные с ним металлы, то это был бы красный эликсир. Серебро также вещество почти совершенное, но женское. Если бы оно путем простого сплавления делало почти совершенными несовершенные металлы, это был бы б е л ы й эликсир (т. е. философский камень, нри помощи которого неблагородные металлы можно превратить в серебро.— Н. Ф.). Но этого нет и не может быть, потому что эти тела (золото и серебро) совершенны только до определенной степени. Если бы их совершенство могло сообщаться несовершенным металлам, последние не совершенствовались бы и загрязнили бы своим соприкосновением совершенные металлы. Но если бы золото и серебро были бы совершенны вдвое, вчетверо, в сто раз и т. д., то они могли бы тогда совершенствовать несовершенные (во столько же раз более)  [c.110]


Смотреть страницы где упоминается термин Золото Сочетания: [c.222]    [c.79]    [c.77]    [c.193]    [c.263]    [c.204]    [c.316]    [c.189]    [c.33]    [c.377]    [c.290]    [c.518]    [c.188]    [c.5]    [c.37]    [c.48]    [c.83]    [c.197]    [c.180]    [c.90]   
Справочник по гальванопокрытиям в машиностроении (1979) -- [ c.11 ]




ПОИСК







© 2025 chem21.info Реклама на сайте