Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Контакт ее на окисление углеводородов

    По характеру действия ядов процессы отравления делят на обратимые (когда после удаления яда из реакционной смеси отравленный катализатор в контакте с чистыми реагентами восстанавливает свой химический состав и активность) и необратимые (когда активность не восстанавливается без специальной обработки — регенерации или химической переработки). Это деление не является универсальным один и тот же яд в зависимости от условий может приводить к обратимому или необратимому отравлению каталиаатора данного типа. Так, 1 мг/м HnS необратимо отравляет никелевый катализатор гидрирования при сравнительно невысоких давлениях и температурах, в то время как 3—5 мг/м HaS обратимо отравляют никелевый катализатор в процессе окисления углеводородов с водяным паром при высоких температурах (> 700°С). [c.106]


    Наиболее важный процесс нитрования — получение широко применяемых в промышленности нитропарафинов С1—С3. При нитровании необходим избыток пропана для предотвращения взрыва, более полного использования азотной кислоты, во избежание глубокого окисления углеводорода, а также для поддержания равномерной температуры во всем объеме реактора. Процесс проводится при 430—450 С, давлении 0,7 МПа. мольном соотношении углеводорода и кислоты, равном 5 1, и времени контакта 0,5—2 с. В этих условиях образуется смесь следующего состава 25% нитрометана, 10% нитроэтана, 25% 1-нитропро-пана и 40% (масс.) 2-нитропропана. Суммарный выход нитропарафинов составляет 30—35% и 40—45% в расчете на превращенные пропан и кислоту соответственно. С изменением температуры и соотношения пропан/кислота состав продуктов реакции изменяется в широких пределах (рис. 13.5). [c.438]

    Настоящая книга является первой из семи намеченных к изданию книг по химмотологии. В ней изложены основные представления о химмотологии как новой научной дисциплине и ее роли в народном хозяйстве. Рассмотрены теоретические основы окисления углеводородов и горения жидких топлив, теория поверхностных явлений в двигателях и механизмах с участием ПАВ, основы трения и износа, механизм действия противоизносных и противозадирных присадок к топливам и маслам. Даны теоретические представления о коррозии конструктивных материалов в контакте с нефтепродуктами, описаны мероприятия по защите от коррозии. [c.2]

    В условиях хранения и эксплуатации углеводородное топливо С растворенным в нем кислородом находится в контакте с металлической поверхностью стенками баков для хранения, трубопроводов, насосов. Известно, что металлы, их оксиды и соли катализируют окисление углеводородов. В связи с этим необходимо определить влияние поверхности конструкционных материалов на окисление топлива в условиях хранения соотношение между процессами окисления топлива в объеме и на стенке стадии окисления, на которые воздействует металлическая стенка ингибиторы, которые следует применять для стабилизации топлива в присутствии металлической поверхности и др. Наряду с гетерогенным катализом в топливе. может протекать и гомогенный окислительный катализ, вызываемый растворенными в нем солями металлов. Роль металлов в окислении углеводородов неоднократно исследовалась. Достаточно подробные данные имеются о механизме гомогенного катализа окисления углеводородов растворенными солями жирных кислот. [c.192]


    В процессе переработки и эксплуатации полимеры находятся в контакте с кислородом и подвергаются окислению, которое приводит к деструкции полимера и накоплению в нем кислородсодержащих групп (карбонильных, гидроксильных, пероксидных и т, д.). Механизм окисления полимеров, в котором участвуют С — Н-связи, в своих главных чертах похож на механизм окисления углеводородов в жидкой фазе. По реакции кислорода с С — Н-связями полимера и содержащимися в нем примесями образуются свободные радикалы. Окисление развивается как последовательность стадий [c.290]

    В работах [12, 19, 26, 27, 29—31] было показано, что в процессе окисления бензина, и особенно крекинг-бензинов, в них накапливаются перекиси и органические кислоты, которые вызывают коррозию стали. Причем чем больше и глубже происходит процесс окисления, тем сильнее коррозия. При контакте непредельных углеводородов с металлами процесс их окисления усиливается. Металлы в данном случае действуют как катализаторы, ускоряя процесс окисления непредельных углеводородов с образованием перекисей и органических кислот. [c.27]

    В литературе не имеется никаких стадийных схем окисления углеводородов на других металлических контактах, за исключением схемы окисления пропилена на платине, предложенной Бутягиным и Еловичем [15]. По этой схеме в результате взаимодействия углеводорода с кислородом, адсорбированным на катализаторе, образуется первое промежуточное соединение углеводорода с кислородом. При дальнейшем окислении этого соединения возможны два пути реакции в зависимости от температуры. При низких температурах наблюдается поверхностное, а при высоких температурах — поверхностно-объемное окисление. Последний процесс представляет собой десорбцию неустойчивого (по отношению к кислороду) промежуточного соединения, образующегося на катализаторе, в объем. В газовой фазе это соединение реагирует с кислородом и образуются углекислый газ и вода. [c.88]

Рис. 3. Зависимость степени окисления углеводородов на катализаторе АП-56 от линейной скорости реагирующей смеси при различных температурах /время контакта 0,04 с/ толуола а - 180°С а - 260°С стирол б - 190°С, б - 260°С -метил-стирол в - 180°С в - 260°С Рис. 3. <a href="/info/1460528">Зависимость степени окисления</a> углеводородов на катализаторе АП-56 от <a href="/info/12713">линейной скорости</a> <a href="/info/939269">реагирующей смеси</a> при <a href="/info/133412">различных температурах</a> /<a href="/info/25836">время контакта</a> 0,04 с/ толуола а - 180°С а - 260°С стирол б - 190°С, б - 260°С -метил-стирол в - 180°С в - 260°С
    Зависимость скорости окисления углеводородов на катализаторе АП 5Ь от концентрации углеводорода в газовой смеси при различной температуре /время контакта 0,04 с/ [c.21]

    По мнению Марека [7], катализатор, ускоряющий первую стадию, ускоряет и все последующие. Трудно представить себе контакт, который увеличивал бы скорость окисления углеводородов, не ускоряя в то же время окисления образующихся альдегидов до воды и углекислого газа. [c.57]

    Изотопный анализ данных ио окислению на У Os этилена в смесях с различными кислородсодержащими соединениями показывает, что ни ацетальдегид, ни окись этилена не могут быть основными промежуточными продуктами образования углекислого газа (рис. 32). В то же время при введении в реакцию кислородсодержащих соединений характер окисления углеводородов изменяется вследствие захвата их поверхностью контакта. [c.77]

    Стадийные схемы различных реакций окисления углеводородов рассматривались выше как протекающие только на поверхности контактов. В настоящее время считается доказанным [214—2191 существование поверхностно-объемных реакций, т. е. процессов, в которых сложная химическая реакция протекает частично гетерогенно на поверхности твердого тела, а частично гомогенно в объеме газа или жидкости. Оказалось, что многие процессы каталитического окисления, считавшиеся совсем недавно чисто гетерогенными, протекают по поверхностно-объемному механизму. К таким реакциям относится окисление водорода [220], метана [221], этана [222], этилена [223], пропилена [224] и аммиака [225] на платине при высоких температурах. При окислении углеводородов на металлическом катализаторе (платине) реакция начинается на поверхности катализатора и заканчивается в газовой фазе. [c.121]

    Значения величин Е и Кщ при глубоком окислении углеводородов на различных контактах [c.169]

    Таким образом, формальная кинетика глубокого окисления углеводородов зависит в первую очередь от строения молекулы и мало изменяется в зависимости от характера контакта (хромиты, платина). Чем больше число атомов углерода в молекуле, тем больше энергия активации реакции глубокого окисления и предэкспоненциальный множитель. Такая закономерность справедлива как для насыщенных и непредельных углеводородов, так и для простейших циклических. Изменение порядка в кинетическом уравнении реакции в зависимости от строения молекулы углеводорода также указывает на определяющую стадию, связанную, по-видимому, с характером образующихся при адсорбции углеводородных радикалов. В некоторых случаях стадией, определяющей скорость процесса, является хемосорбция кислорода. [c.173]


    Для различных каталитических реакций применяют не только простые и сложные полупроводниковые окисные контакты, но также смеси различных твердых тел, которые превращаются в условиях процесса в твердые растворы или остаются многофазной системой. В литературе [280 и в частности 308] имеются данные по каталитической активности и селективности смешанных контактов по отношению к реакции дегидрирования спиртов, окисления углеводородов и др. [c.221]

    Создание новых катализаторов для окисления углеводородов связано в ряде случаев с подбором таких систем, в которых удалось бы совместить дегидрирующие и окислительные свойства поверхности. Такое сочетание вряд ли возможно без использования смешанных контактов. Таким образом, эти системы должны более широко изучаться и применяться в технике. [c.228]

    Несмотря на отсутствие теории процессов каталитического окисления углеводородов, в настоящее время выявлены некоторые закономерности, позволяющие управлять этими реакциями. Для быстрого и успешного развития промышленности необходимы активные катализаторы, обеспечивающие высокую производительность и избирательность, т. е. сведение до минимума побочных реакций. С одной стороны, продолжаются поиски катализаторов для новых процессов (например, получение окиси пропилена из пропилена, акриловой кислоты из пропилена, окисление насыщенных углеводородов и др.), с другой — улучшаются или заменяются контакты для процессов, известных и используемых в промышленности органического синтеза (например, получение окиси этилена из этилена, акролеина из пропилена, малеинового и фталевого ангидридов из бензола и нафталина и др.). [c.229]

    Соединения, содержащие металлоидные добавки, легко восстанавливаются углеводородами, содержащимися в реакционной смеси, п по мере течения каталитического процесса концентрация добавок в контактах уменьшается. Убыль добавки в катализаторе легко возместить введением в реакционную смесь небольших количеств летучих органических веществ, содержащих металлоиды. Такой метод позволяет легко регулировать селективность. Если концентрация добавок в катализаторе возрастает и начинается отравление, то, выключив подачу примеси, можно довести содержание ее до оптимальной в результате реакции восстановления углеводородом. Такой процесс модифицирования может быть автоматизирован и, следовательно, использован в технологии получения мономеров окислением углеводородов. [c.234]

    К катализаторам глубокого окисления углеводородов предъявляются иные требования, чем к контактам мягкого окисления. Катализаторы глубокого окисления должны обеспечить полную деструкцию молекул углеводородов с образованием только углекислого газа и воды. [c.234]

    Таким образом, успешное развитие гетерогеннокаталитического окисления углеводородов связано с дальнейшей разработкой теории процесса, с выявлением механизма элементарных актов, установлением природы активной поверхности окислительных контактов. Решение этих проблем позволит наиболее рационально подобрать катализаторы и обеспечить высокую селективность процессов. Совершенствование технологии окислительной переработки углеводородов -связано с развитием гидродинамики, химического машиностроения, с производством новых теплостойких материалов, автоматизацией и др. Совершенствование указанных отраслей даст возможность в недалеком будущем управлять процессами окисления углеводородов и получать новые ценные продукты, необ.ходимые для химической промышленности. [c.11]

    Переход металлического катализатора в состояние низшей валентности может происходить и при его взаимодействии с об-разуюш имися при окислении альдегидами, спиртами и кетона-ми. Энергия активации взаимодействия гидропероксидов с металлическим катализатором во много раз меньше энергии активации термического распада гидропероксида, вследствие чего реакции с уча"Ьтием металлов протекают с высокими скоростями. Например, гидропероксид кумила взаимодействует с Fe2+ со скоростью, в 4000 раз большей, чем скорость термического распада [66]. Гетерогенное ускорение окисления углеводородов при контакте с поверхностями металлов, оксидов и солей может быть также связано с активированием кислорода при его взаимодействии с активными центрами твердой фазы [73]. [c.59]

    Углеводородные Смолы, асфальтены, карбены, карбоиды, ас-фальтогеновые и окси-кислоты, кокс, сажа и т. д. Окисление углеводородов, входящих в состав масла, термическое разложение и сгорание масла Контакт с кислородом воздуха при высокой температуре, неблагоприятный тепловой режим работы двигателя и неполное сгорание топлива (для моторных масел) [c.26]

    Коррозионное действие масел в отличие от их защитной способности проявляется при повышенных те1мпературах (от 80 до 300 С) и контактировании металла с объемом масла, в котором водный электролит отсутствует или его количество крайне незначительно. В большинстве случаев при контакте масел с металлами даже при высоких температурах коррозия бывает смешанной (и химической, и электрохимической). Ее вызывают некоторые серосодержащие соединения и нефтяные кислоты, содержащиеся в маслах в виде примесей и, как правило, удаляемые в процессах очистки. Способствуют коррозии также вторичные продукты окисления и термомехаиической деструкции масел. Органические кислоты образуются при окислении углеводородов и накапливаются в маслах при хранении и эксплуатации. Об их содержании и потенциальной коррозионной агрессивности масел судят по кислотному числу, которое для нефтяных масел не превышает 0,1 мг КОН/г. [c.36]

    Противокоррозионные присадки об])азуют на металлических поверхностях адсорбционные или хемосорбционные защитные пленки, препятствующие контакту коррозионно-агрессивных компонентов масла с металлом. Действие противокоррозионных присадок не ограничивается формированием защитных пленок и может проявляться также в торможении окисления углеводородов с образованием кислых коррозионно-агрессивных веществ и нейтрализации кислых продуктов, образующихся прн окислении. Некоторые ингибиторы коррозии, обладая высокой защитной эффективностью, усиливают коррозию цветных металлов (особенно меди и свинца), что делает необходимым вводить в масла одновременно и ингибиторы коррозии, и противокоррозионные присадки. [c.306]

    Окисление топлив представляет собой сложный, многостадийный свободнорадикальный процесс, происходящий в присутствии кислорода воздуха. Скорость реакции окисления углеводородов резко возрастает с повышением температуры. Контакт с металлом оказывает каталитическое воздействие на процесс окисления. Низкую химическую стабильность имеют олефиновые углеводороды, особенно диолефршы с сопряженными двойными связями. Высокой реакционной способностью обладают [c.23]

    НОСТИ, если кремнезем, находящийся в контакте с углеводородом в воздушной среде, нагревать ниже точки кииенпя органического соединения. Бойлан [386] предложил способ, согласно которому смесь, состоящая из 10 % кремнезема и белого парафинового масла, нагревается на воздухе при перемешивании и температуре 250°С в течение 1 ч и затем охлаждается. После удаления масла гексаном и высушивания образуется гидрофобный порошок. Неизвестно, происходило ли на первом этапе процесса окисление масла до спирта или же совместное дегидрирование и окисление масла до алкена. Подобная смесь масла с кремнеземом может с успехом применяться в качестве антипенной присадки. Как катализаторы могут использоваться микроколичества пафтепатов Со, Мп или РЬ. [c.960]

    Скорость подачи воздуха. Важное значение в процессах жидкофазного окисления углеводородов, и в частности алкилбензолов, имеет парциальное давление кислорода. При каталитическом окислении алкилбензолов люжно использовать кислородсодержащий газ или чистый кислород, однако на практике предпочтителен воздух [191], реже — кислород [192]. Скорость окисления зависит от парциального давления следующим образом с увеличением давления кислорода скорость окисления растет до определенного значения, после чего практически не изменяется. Это согласуется с принятой схемой ра-дикаль но-цепиого механизма окисления [4]. При малой концентрации растворенного кислорода преобладает реакция (2.2) [К] >[КОО ], и обрыв цепи происходит по реакции (2.5) (см. с. ]]). Лимитирует скорость окисления реакции (2.1), поэтому с увеличением [Ог] реакция ускоряется. При большой концентрации [Оа] реакция (2.1) протекает быстро ([КОг ] [К ]) и обрыв цепей происходит по реакции (2,7). В этом случае скорость окисления не зависит от [Ог] и лимитирует процесс реакции пероксидного радикала с углеводородом (2.2). Расход подаваемого воздуха должен обеспечивать необходимую скорость реакции, которая зависит не только от хим ических, но и от физических факторов поверхности контакта фаз, скорости диффузии, парциального давления кислорода и др. [c.47]

    Выяснение влияни1н величины зерен катализатора АП 5б на степень окисления углеводородов при постоянном времени контакта 0,04 с и линейной скорости потока 1,2 м/с представляет интерес с точки зрения затрат на преодоление гидравлического сопротивления. Найдено [12], что при температуре реакции 150-1б0°С изменение величины зерен катализатора от 0,75 до 2,5 мм не меняет степени окисления углеводородов. При температуре 2бО°С уменьшение величины зерен катализатора повышает степень окисления углеводородов примерно на 8,5-14,3 . В связи с этим целесообразно использовать при высоких температурах крупнозернистый катализатор для снижения затрат электроэнергии на транспортирование отходящих газов на очистку. Однако применение катализатора с более мелким зернением гранул позволяет снизить температуру процесса очистки и уменьшить расход топлива [15]- [c.23]

    В последние два десятилетия исследованию гетерогенных окислительных реакций посвящается все большее количество работ (работы П. В. Зимакова, П. Г. Сергеева, С. С. Медведева, В. А. Ройтера, С. 3. Рогинского, Г. К. Борескова, М. И. Темкина, Н. Н. Ворожцова, И. И. Иоффе и др. в СССР Марека, Фразера, Шарло, Твигга и др. в Англии, США и Франции). В настоящее время насчитывается значительное количество работ по каталитическому окислению углеводородов, но лишь в некоторых из них раскрывается механизм процесса. Остальные работы являются по существу описанием наиболее выгодных условий проведения отдельных реакций. В табл. 1—3 приведены результаты исследований окисления некоторых углеводородов на различных контактах. [c.9]

    Реакции окисления углеводородов экзотермичны. Небольшой перегрев контакта может стимулировать реакцию глубокого окисления углеводородов и привести к падению селективности, а следовательно, к уменьшению рентабельности процесса. Поэтому обеспечение изотермических режимов в заводских условиях является одним из основных условий при выборе конструкции контактных аппаратов. Обычно в технике применяется неподвижный слой катализатора в этом случае интенсивность процесса ограничивается рядом факторов (малая интенсивность тенлоотдачи, неравномерность температуры по сечению контактного объема и др.). При использовании псевдоожиженного слоя катализатора отпадает ряд трудностей и увеличивается производительность процессов. Так, поданным Борескова [69], при окислении этилена в окись этилена в присутствии псевдоожиженного катализатора производительность с единицы его объема возрастает в 2,5 раза. Окисление бензола в малеи-новый ангидрид в псевдоожиженном слое ванадиевого катализатора также позволило увеличить производительность процесса. Этот метод, по-видимому, найдет широкое применение в ближайшем будущем. [c.16]

    Таким образом, успешное развитие гетерогенного окисления углеводородов обусловлено дальнейшей разработкой теории процесса, выявлением природы элементарных актов, установлением природы активной поверхности окислительных контактов. Решение этих проблем позволит наиболее рационально подобрать катализаторы и обеспечить высокую се.лектнвность процессов. Совершен- [c.16]

    Дискуссионным остается еще вопрос о возможности существования гетерогенно-гомогенной реакции при наличии свободного объема только между зернами катализатора. В последнее время Поляков [227] с сотрудниками методом раздельного колориметри-рования показал, что неполное окисление углеводородов и спиртов является гетерогенно-гомогенным каталитическим процессом, причем роль катализаторов играют как контакты мягкого и глубокого [c.124]

    Выше были разобраны стадийные механизмы ряда типичных реакций окисления углеводородов. Характерными особенностями всех реакций являются независимое образование продуктов окисления из углеводородов при низких температурах и последовательное превращенпе углеводород кислородсодержащее соединение —> СО2 при высоких температурах. При увеличении молекулярного веса углеводородов и усложнении его строения (изосоединеиия, циклические п др.) образуется еще большее количество стадий и возрастают трудности, связанные с расшифровко механизма таких процессов. Даже для простых газов (окиси углерода, метана) в настоящее время не имеется данных о природе элементарных актов при их окислении. Поэтому построение стадийных схем часто основано на ряде качественных закономерностей, и возможность количественной проверки этих схем еще не достигнута. Однако существование даже таких схем ускорит постановку экспериментальных исследований с привлечением новых методов, которые позволят обнаружить перекисные радикалы на поверхности окислительных контактов, дадут возможность пересмотреть постулированные ныне механизмы окислительных процессов, а также позволят ближе подойти к решению вопроса об управлении селективностью процессов каталитического окисления углеводородов. [c.126]

    Процесс окисления углеводородов проводится на пористых катализаторах, используемых в виде кусков или гранул различных размеров. Скорость подачи реагирующих веществ и отвод продуктов реакции от поверхностп контактов оказывают существенное влияние на скорость окисления. [c.127]

    Преобразуем уравнения (316) и (326). Экспериментальные данные по кинетике окисления углеводородов на УзОд указывают на слабое торможение продуктами скоростей реакций образования альдегидов, кислот и СО2 на стационарной поверхности контакта. Поэтому для уирогцения в дальнейшем анализе кинетических уравнений не рассматривается влияние продуктов на скорость окислительного процесса. Адсорбция кислорода при температурах реакции па 265 мала. Поэтому в уравнениях (316) и (326) членами Ъзр и можно пренебречь. [c.143]

    В литературе почти не имеется данных о кинетических законах глубокого окисления углеводородов до углекислого газа и воды. Вероятно, это связано с трудностью получения надежных кинетических характеристик вследствие сильной экзотермичности процесса. В изотермических условиях Марголис и Тодес [260] исследовали кинетику каталитического окисления различных классов углеводородов на ряде контактов (хромнте магния, меди и илатипе). Для алифатических углеводородов изостроения (2,2,4-диметилиен- [c.165]

    Заканчивая рассмотрение вопроса о кинетических закономерностях окисления углеводородов, следует подчеркнуть, что, вероятно, повышение селективности процесса невозможно без изменения химических и электронных свойств поверхности катализаторов. Устранение побочных процессов и доокисления образующихся кислородсодержащих продуктов может несколько повысить селективность, но только до определенного предела. Дальнейшее же увеличение селективности связано с характером образующихся на новерхности активных перекисных радикалов и направлением их превращений. Кинетика реакции окисления различных углеводородов относительно проста, и в уравнения скоростей входят концеитрации реагирующих веществ в нулевой или первой степени только в редких случаях наблюдаются дробные показатели. Однако изучение адсорбции углеводородов на различных окислительных катализаторах показало, что поверхность этих контактов неоднородна и характеризуется эксионенциальной функцией распределения по теплотам сорбции. Вероятно, хорошее соответствие теоретически выведенных уравнений (с использованием изотерм Лэнгмюра, справедливых только для однородных поверхностей) и опытных данных указывает, что, хотя процессы протекают в действительности на неоднородных поверхностях, для них возможна имитация однородных поверхностей. Возможно также, что некоторые реакции протекают при относительно большом занолнении иоверхности реагирующими компонептами, и тогда также возможна квазиоднородность . Нами не рассматриваются более сло кные случаи протекапия каталитической реакции на неоднородных поверхностях. [c.177]

    Марголис [108] исследовала окисление ацетальдегида, формальдегида и окиси этилена на катализаторах глубокого окисления (хромите магния) и мягкого окисления (ванадиевых контактах и серебре). Было пзучено окисление ацетальдегида в смеси с кислородом нри 200° в динамических условиях. Концентрация кислорода в одном с.чучае отвечала стехиометрическому количеству, а в другом — составляла 20% от стехиометрии. В обоих случаях ацетальдегид окислялся на 80 % в уксусную кислоту и на 20 % в углекислоту. Следовательно, на типичном контакте глубокого окисления — хромите магния - одпп из продуктов окисления углеводородов — ацетальдегид — окисляется не в СОа, а главным образом в уксусную кислоту. Если бы ацетальдегид яв.лялся главным промежуточным продуктом глубо1сого окисления, то в продуктах реакции должны были бы обнаруживаться большие концентрацип уксусной кислоты, тогда как по данным многочисленных анализов ни в одном случае не было найдено альдегидов и кислот более 0,01%. [c.180]

    На основании суммы данных о поведении кислородсодержащих продуктов реакции на поверхности различных окислительных контактов можно сделать вывод, что хотя в условиях катализа многие из них нестойки, тем не дгенее не они ответственны за протекание реакции глубокого окисления углеводородов. Прочная адсорбция углеводородов на поверхности контакта тормозит скорость реакцпи их окисления. [c.185]

    Марголис и Тодес [282], изучая действие добавок на скорости глубокого окисления углеводородов, показали, что в зависимости от концентрации примесей в контакте симбатно меняются основные кинетические характеристики энергия активации Е и нредэкспо-ненциальный множитель К . Эти особенности в сочетании с различным влиянием примесей на каталитическую активность заставили Рогинского отказаться от старой терминологии (промотирование, отравление) и ввести новый термин модифицирование (двойственное изменение каталитической активности). [c.186]

    Для каталитического окисления углеводородов использовались различные смешанные контакты (см. стр. 221). На рис. 86 показано изменение активности и селективности окисления бензола в малеи-новы ангпдрид в зависимости от состава ванадий-молнбденовых [c.224]

    Вольфрам образует соединения, близкие по химическим свойствам к соединениям молибдена. Так же как окись молибдена, 0з малоактивный катализатор для неполного окисления углеводородов. На рис. 91 (кривая 2) показано изменение работы выхода электрона смешанных вольфрам-висмутовых катализаторов различного состава. Смеси, содержащие 35—40% атомн. В1, увеличивают ф аналогично молибден-висмутовым контактам. На рис. 92 показана зависимость удельных констант скоростей образования акролеина, СО и СО., от состава катализатора. Селективность окисления пропилена в акролеин максимальна для катализаторов, содержащих 33—43% атомн. В1, но значительно ниже значений, полученных для молнбден-висму-товых контактов. [c.227]

    Выше были нриводепьЕ данные по использованию различных окислов и металлов как катализаторов. В иастояш ее время лучшими контактами для сириеза мономеров из углеводородов являются окислы металлов V и VI групп периодической системы Менделеева (окислы ванадия, молибдена, вольфрама) и их смеси. Вероятно, для окислительного катализа имеет суш ественное значение наличие переходных элементов с незаполненными электронными оболочками, входящих в состав катализатора. Экспериментальные данные ио этому вопросу весьма ограничены. Другие соединения этих элементов (карбиды, силициды и др.) пока еще не исследованы как катализаторы окисления углеводородов. [c.230]

    Состав продуктов реакции окисления зависит от характера химических связей адсорбированных кислорода и углеводорода с поверхностью контакта и от химических свойств катализатора. Эти свойства твердого тела зависит от элементов и соединений, входящих в его состав, а также от характера посторонних микродобавок. Нанрпмер, прочность связи адсорбированного кислорода с серебром и платиной (типичными катализаторами) различна. На платине изотопный обмен адсорбированного О2 с газообразным начинается только при 300°, реакция же окисления углеводородов протекает с большой скоростью при температуре ниже 100°. На серебре при температуре реакции окисления этилена кислород поверхности легко подвижен. [c.230]


Смотреть страницы где упоминается термин Контакт ее на окисление углеводородов: [c.60]    [c.163]    [c.174]    [c.252]    [c.46]    [c.44]    [c.123]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.948 ]




ПОИСК







© 2024 chem21.info Реклама на сайте