Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярный вес полимеров вычисление

    Метод определения молекулярной массы путем измерения вязкости растворов очень удобен благодаря несложности применяемого оборудования. Этот метод может быть использован в любой заводской и цеховой лаборатории, однако получаемые абсолютные значения молекулярной массы полимера не всегда достаточно точны. Это объясняется тем, что вязкость разбавленного раствора определяется размером молекул, а размер молекул и молекулярная масса — это не одно и то же. При одной и той же молекулярной массе молекула может быть линейной и разветвленной, т. е. она может иметь неодинаковые размер и форму, что отражается на значении характеристической вязкости. Если постоянные К я а были определены для полимера менее разветвленного, а затем они используются при исследовании более разветвленного полимера того же химического состава или наоборот, то значения молекулярной массы, вычисленные по уравнению (14.26), могут быть неверными. Поэтому вискозиметрический метод может быть рекомендован для определения не абсолютного значения молекулярной массы, а ее изменения в различных процессах (при полимеризации, деструкции и т.д.). [c.409]


    Ответ. При вычислении средних значений молекулярных масс полидисперсных полимеров определяющее влияние оказывает содержание низко- или высокомолекулярных фракций на физические характеристики, служащие для расчета М.  [c.56]

    В и с к о 3 п м е т р и ч е с к и й м е т о д определения молекулярного веса экспериментально наиболее прост. Для вычисления молекулярного веса используют зависимость между характеристической вязкостью растворов линейных полимеров и их. м о л е к у л я р I п, 1 м весом  [c.78]

    Значение а зависит от конформации макромолекул, термодинамического качества растворителя и температуры (см. гл. 2). Оно может изменяться от 0,5 для статистического молекулярного клубка в 0-растворителе до 2,0 для абсолютно жесткой молекулы. Величина А" , имеет размерность дл/г, изменяется обычно в пределах от 10 до 10 и зависит от выбора системы полимер - растворитель, полидисперсности, разветвленности, тактичности полимера, температуры и других факторов. В этом отношении выбор значений КцЧ а. дня вычисления усло- [c.34]

    Молекулярный вес этих соединений, определенный такими физическими методами, как криоскопия и эбулиоскопия, хорошо совпадает с молекулярным весом, вычисленным по содержанию формальдегидных и метоксильных или ацетильных групп, что явилось доказательством цепного строения указанных полимеров. Кроме того, в обоих рядах диацетатов и диметиловых эфиров с увеличением длины цепи обнаружились систематические изменения физических свойств, например растворимости, плотности, температуры плавления и т. д. [c.350]

    Молекулярный вес, вычисленный по уравнению (34) на основании данных, полученных при измерении вязкости раствора полимер, называется средневязкостным молекулярным весом [c.50]

    В связи с этим молекулярные массы полимеров являются некоторыми средними величинами, значения которых получаются различными в зависимости от способа вычисления. [c.17]

    Работа выполняется в одном из двух вариантов 1) изучение зависимости вязкости от концентрации раствора полимера и сопоставление этой зависимости с уравнением Эйнштейна 2) исследование зависимости вязкости от концентрации раствора и вычисление молекулярного веса полимера. [c.136]

    Предварительно же находят константу Км для полимергомологического ряда, членом которого является данный полимер. С этой целью криоскопическим методом определяют молекулярный вес какого-либо низшего гомолога полимергомологического ряда. Затем, измерив вязкость нескольких растворов этого вещества, находят среднее значение Км Для данного ряда. Зная Км, по величине вязкости можно определять молекулярный вес любого полимера (члена данного гомологического ряда). Однако Км не является постоянной величиной и зависит от молекулярного веса полимера. Она уменьшается с увеличением М. Поэтому результаты, вычисленные по уравнению (214), не являются достаточно точными. Уравнение Штаудингера практически применимо лишь для вещества с молекулярным весом не более 30 000 а.е. м. [c.386]


    Уравнение Марка — Хоувинка — Сакурады [уравнение (9,19)] не справедливо также для разветвленных полимеров. Средневязкостный молекулярный вес, вычисленный с использованием этого уравнения, для разветвленных полимеров будет ниже, чем для соответствующих линейных полимеров (особенно в области более высоких молекулярных весов). Для того чтобы расчет был правильным, необходимо знать функцию молекулярновесового распределения, функцию распределения точек ветвления, структуру ветвлений. [c.137]

    Поскольку полимеризация проводилась в растворах, молекулярные веса исследованных полимеров не превышали 20 ООО. Сопоставление среднечисловых величин молекулярного веса, вычисленных из химиче-ског з анализа, с средневязкостными показывает, что в первом случае Му/Мп. около 1,7, а во втором — около 1,2. [c.276]

    Обширные экспериментальные исследований показали, что при изменении концентрации раствора в очень пшроких пределах — от долей процента до чистого полимера, не чзодержащего растворителя, величина С для полимера, вычисленная с учетом вклада в оптические и механические свойства системы, вносимые растворителем, не зависит от концентрации и представляет собой внутренний параметр полимера. Так, для нолиизобутилена при изменении концентрации от 0,1 до 100% и напряжения сдвига в пределах нескольких десятичных порядков величина собственного динамооптического коэффициента полимера оставалась постоянной и равной 1500— 1600 Вг, причем этот результат относился как к области ньютоновского течения, так и к такой области высоких скоростей сдвига, в которой наблюдалась очень резко выраженная аномалия вязкости. Отсюда следует, в частности, что динамооптические свойства полимерных систем определяются не скоростью деформации, а напряжениями, действующими нри течении, и эффект двойного лз енреломле-ния в потоке определяется теми же самыми молекулярными механизмами, что и возникновение касательных и нормальных напряжений. [c.373]

    Кривые рис. 1 показывают степень изменения основных величин, характеризующих состояние полимера и растворе в>гзкости, молекулярного веса и сольватации при нагревании в зависимости от концентрации раствора. Легко видеть, что относительная вязкость изменяется в большей степени у более концентрированных растворов,сольватация имеет обратную тенденцию, а величина молекулярного веса, вычисленного по Штаудин-зеру, изменяется независимо от концентрации нагреваемого раствора. [c.415]

    Вывод указанного выше уравнения основан на том предположении, что раствор полимера является идеальным и однородным по молекулярному весу. Однако свойства растворов полимеров сильно отклоняются от свойств идеальных растворов, поэтому при расчете необходимо вводить поправки [23, 27]. Так как полимер поли-дисперсен, распределение по концентрации при седимен-тационном равновесии не подчиняется указанному выше уравнению, т. е. значения молекулярных весов, вычисленные на основании экспериментальных данных на разных расстояниях х от оси вращения, неоднозначны. Более совершенный метод состоит в одновременном определении значений и при всех значениях х в одном и том же эксперименте, т. е. одновременное определение с х) и г х). Таким образом, на расстоянии х [c.28]

    Если фракционирование полимера идеальное, т. е. каждая фракция имеет довольно узкое распределение по молекулярным весам, так что ее можно считать мо-нодисперсной, то молекулярный вес, вычисленный на основании значений И для нефракционированного образца при помощи найденных значений /Сна, является средневязкостным молекулярным весом согласно уравнению (29). [c.50]

    Характерным отличием жидких тиоколов является способность превращаться в резины при комнатной температуре за счет реакций концевых меркаптанных групп. В связи с этим наиболее важной характеристикой тиоколов является содержание 5Н-групп и среднечисленная функциональность, показывающая среднее число меркаптанных групп, приходящихся на молекулу полимера. Функциональность полимера может быть рассчитана по количеству примененного 1,2,3-трихлорпропана. Последний полностью входит в состав жидкого полимера, что было доказано методом радиолиза с применением меченого по углероду 1,2,3-трихлорпропана [23]. Функциональность полимеров зависит от количества 1,2,3-трихлорпропана и от молекулярной массы полимера (см. табл. 1). Плотность разветвленности, вычисленная по среднему числу узлов разветвления, определяется только количеством примененного сшивающего агента и не зависит от молекулярной массы полимера. [c.559]

    Уравнение изотерм экстракции (16) по содержанию и форме совпадает с изотермой адсорбции Лэнгмюра, поэтому экстракцию полимерами следует рассматривать как адсорбцию МеА на линейной полимерной цепи. Вид изотермы не зависит от длины цепей и их распределения по молекулярным массам. В настоящее время еще нет экспериментальных данных, пригодных для проверки этих утверждений, но изложенные выше представления были успешно применены при интерпретации изотерм экстракции сульфата уранила линейно полимеризованным в бензольном растворе ди-2-этилгексилфосфатом уранила иОаХа в присутствии допорных добавок — ТБФ и ДОСО [5—7 ]. Протекающие в названных системах нроцессы даже более сложны, так как без допорных добавок уранилсульфат на полимерных цепях не адсорбируется, а сопряженная адсорб-1ЩЯ иОгЗО и нейтрального кислородсодержащего экстрагента сопровождается конкурентной адсорбцией последнего. Кроме того, в отличие от рассмотренного выше простого примера здесь возможно несколько способов заполнения звеньев как при адсорбции нейтральных молекул, так и при сопряженной адсорбции. Минимизация расхождений между измеренными и вычисленными изотермами с необходимыми усложнениями в записи условий равновесия позволила количественно описать наблюдаемые изотермы в широком интервале концентраций иОгХг (от 0,01 до 0,25 моль/л), ТБФ (от 0,1 до 2 моль/л) и ДОСО (от [c.68]


    О с м о м е т р и ч е с к и й м е т о д определения молеку-..чярного веса основан на вычислении молекулярного веса полимера по величинам осмотического давления Р его растворов. Для вычисления мож[ю использовать закон Вант-Гоффа, но которому )ти две величины СЕШзаны следующей ависнмостью  [c.79]

    Если исходить из представлений, используемых при вычислении идеальной энтропии смешения изодиаметрических молекул, зависящей только от числа смешивающихся молекул, то повышение молекулярного веса одного компонента должно приводить к уменьшению числа молекул этого компонента в I г системы и, следовательно, к уменьшению энтропии смешения данных весовых количеств обоих веществ. Энтальпия ( или внутренняя энергия) не должна изменяться, поскольку весовые количества смешивающихся компонентов, а следовательно, и число взаимодействующих атомных групп не изменяются. Отсюда следует, что по мере повышения молекулярного веса полимера значение энтропийного члена TAS в уравнениях (XIV, 3) и (XIV, 4) будет неограниченно уменьшаться и определяющее значение должен приобрести энергетический член АН или АН. Однако при исследовании растворения высокомолекулярных веществ с цепными молекулами было [c.439]

    Рассмотрение формулы т1уд=Л Мс приводит к выводу, что отношение г)уд/с (приведенная вязкость) не зависит от концентрации, поскольку /( и М — постоянные величины. Но в действительности вследствие взаимодействия молекул растворенного вещества друг с другом даже в разбавленных растворах приведенная вязкость зависит от концентрации, линейно увеличиваясь вместе с ней. Этот факт учитывают при более точных определениях молекулярного веса высокомолекулярных соединений. Тогда, произведя измерения для нескольких растворов различных концентраций (например, 0,2 0,4 0,6%), строят график концентрация — приведенная вязкость и путем экстраполирования находят на ординате значение приведенной вязкости при бесконечном разбавлении. Кроме того, принимают во внимание, что длинные молекулы полимера изгибаются и сворачиваются в клубки, что должно привести к уменьшению вязкости раствора. С учетом обоих факторов вычисление производят по так называемому обобщенному уравнению Штаудин-гера приведенная вязкость г уд/с=/СМ°, где а=0,67. [c.283]

    При выводе этого уравнения Флори были сделаны следующие допущения 1) свойства связи в данном полимергомологическом ряду не зависят от молекулярной массы 2) изменение фракциоинного состава при неизменной средней молекулярной массе сопровождается только изменением энтропии 3) в состоянии равновесия полимер имеет такой фракционный состав, при котором энтропия достигает максимального значения. Кривые распределения, вычисленные по уравнению Флори, приведены на рис. 23. Эти кривые свидетельствуют о значительной по-лидисперсности продуктов поликонденсации. [c.145]

    Делокализация большого числа я-электронов по молекулярной цепи полимера с системой сопряженных связей обусловливает большой выигрыш энергии, т. е. высокую термодинамическую устойчивость таких полимеров. Это объяс[1яется тем, что образование соединений с системой сопряже1П1ых связен протекает с выделением большого количества тепла, значительно превышающего значения энергий, вычисленных на основании констант энергии связи. Например, для бензола разность энергии, рассчитанной по теплотам горения и по константам энергии связи, составляет около 146 кДж/моль (35 ккал/моль), для стирола — [c.408]

    Кроме перечисленных методов определения молекулярного веса, следует указать на методы, использующие молекулярно-кинетические свойства растворов высокополимеров, в которых молекулярный вес может быть вычислен по величине коэффициента диффузии О (см. разд. VI). Однако при этом в известное уравнение Эйнштейна должны быть введены поправки на асимметричную форму молекул В отличие от низкомолекулярных соединений высоко полимеры перед растворением набухают и при этом значи тельно увеличиваются в объеме за счет поглощения раство рителя. Степень набухания — количество жидкости, погло щенной 1 кг вещества, выраженное в процентах к первона чальной массе сухого вещества, — достигает более 1000% [c.74]

    Согласно уравнению Штаудингера вязкость раствора прямо пропорциональна молекулярной массе растворенного полимера и концентрации раствора. На завйсимости (ХП1.5) основан один из методов определения молекулярной массы полимеров. Однако этот метод применим только к веществам с молекулярной массой не более 80000, макромолекулы которых можно считать жесткими. Макромолекулы с большей молекулярной массой уже способны изгибаться, для них результаты вычислений по уравнению Штаудингера будут содержать большую погрешность. [c.257]

    Молекулярный вес целлюлозы лежит в пределах от 300000 до 500 000, что соответствует 3000—5000 структурных единиц Се в полимере. Данные рентгеноструктурного анализа указывают на то, что длина одной структурной ячейки вдоль оси полисахаридной цепи (период идентичности) близка к величине 10,25 А, вычисленной для длины одной целлобиозной единицы следовательно, полисахаридные цепи должны быть приблизительно прямыми, вытянутыми вдоль оси волокна целлюлозы. Тот факт, что в волокнах целлюлозы обнаруживаются кристаллические области, объясняется, по-видимому, наличием кристаллической структурной единицы, построенной из пакета (связки) параллельно ориентированных цепей (мицелл). Ширина мицеллярной единицы составляет около 60 А (100—200 целлюлозных цепей), длина—по крайней мере 200 А (200 глюкозных единиц). Значительная механическая прочность и химическая устойчивость приписыва ется мицеллярной структуре целлюлозы.  [c.565]


Смотреть страницы где упоминается термин Молекулярный вес полимеров вычисление: [c.467]    [c.467]    [c.377]    [c.252]    [c.80]    [c.458]    [c.188]    [c.72]    [c.192]    [c.76]    [c.283]    [c.377]    [c.74]    [c.573]    [c.44]    [c.84]    [c.201]    [c.251]    [c.168]    [c.440]    [c.183]    [c.84]    [c.398]   
Практическое руководство по определению молекулярных весов и молекулярно-весового распределения полимеров (1964) -- [ c.23 , c.67 , c.102 ]




ПОИСК





Смотрите так же термины и статьи:

Константы К и а в уравнении для вычисления молекулярного веса по характеристической вязкости для некоторых полимеров



© 2025 chem21.info Реклама на сайте