Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Осмотическое давление скорости

    Осмометры можно подразделить по принципу измерения осмотического давления и по диапазону измеряемого давления, от которого существенно зависит конструкция прибора. Измерение осмотического давления статическими методами проводится после наступления равновесия в системе раствор — мембрана — растворитель. В простейшем случае осмотическое давление измеряется по высоте столба жидкости. Недостатком статического метода является сложность определения момента наступления равновесия и значительные затраты времени. Для быстрых и точных измерений служит динамический метод. Идея этого метода заключается в измерении объемной скорости проницания через мембрану растворителя при различном давлении в ячейке (рис. 1-8). Интерполяцией данных в области прямого и обратного осмоса получаем значение осмотического давления. [c.38]


    Наряду с дисперсными системами в курсе коллоидной химии изучают свойства растворов высокомолекулярных веществ (ВМВ). Эти системы принципиально отличны от коллоидных систем. Растворы ВМВ — гомогенные термодинамически устойчивые обратимые системы, которые образуются самопроизвольно и по своей природе являются истинными молекулярными растворами. Однако при всех различиях их объединяет с коллоидными системами такой важный признак, как размер частиц. Молекулы ВМВ — макромолекулы как и коллоидные частицы, состоят из многих тысяч атомов. С этим связаны схожесть оптических свойств, малая скорость диффузии, низкое осмотическое давление у тех и других систем. [c.460]

    Существуют следующие мембранные методы микрофильтра-цня — процесс разделения коллоидных растворов и взвесей под действием давления ультрафильтрация — разделение жидких смесей под действием давления обратный осмос — разделение жидких растворов путем проникновения через полупроницаемую мембрану растворителя под действием приложенного к раствору давления, превышающего его осмотическое давление диализ — разделение в результате различия скоростей диффузии веществ через мембрану, проходящее при наличии градиента концентрации электродиализ — процесс прохождения ионов растворенного вещества через мембрану под действием электрического ноля. [c.106]

    Давление, которое надо приложить к раствору, чтобы скорости обоих процессов стали равными, называется осмотическим. Выражение осмотическое давление в какой-то мере условно, так как оно проявляется только при наличии системы, состоящей из растворителя, раствора и полупроницаемой перегородки. [c.94]

    На этом осмометре с ис пользова нием ацетатцеллюлозных мембран серии МГА-95 производства ВНИИСС были проведены измерения осмотического давления динамическим и статическим методами. Во всех случаях мембраны располагались активным слоем к раствору. При динамическом методе в камере с раствором создавали давление, большее или меньшее осмотического, и по скорости потока растворителя через [c.41]

    Далее делаются следующие допущения мольная плотность раствора полагается неизменной осмотическое давление считается пропорциональным мольной доле растворенного вещества параметр Оам/(й6) принимается независимым от концентрации и скорости подачи питающего раствора мольная проницаемость растворенного вещества через [c.224]


    Рассмотрим [134] напорный канал аппарата (например, рулонного типа), состоящего из нескольких последовательно соединенных элементов (рис. У-Ю), с двумя проницаемыми стенками и турбулизатором между ними (на рис. У-Ю турбулизатор не показан). Исходный раствор входит в канал в точке х = Ь и движется вдоль канала, причем часть раствора в виде фильтрата проходит через мембрану с постоянной скоростью Wм. Полагаем, что величина пропорциональна рабочему давлению (т. е. считаем, что гидравлические потери малы по сравнению с рабочим давлением) и осмотическое давление в процессе разделения меняется незначительно. Этот случай, например, может встретиться на практике при обессоливании воды с начальной концентрацией до 3—5 г/л (при более высоких концентрациях соли в исходной воде при расчете [c.269]

    В результате осмоса объем жидкости в цилиндре увеличится и поршень 3 поднимется. Чтобы предотвратить возрастание объема с разбавлением раствора и остановить осмос, необходимо извне создать давление на раствор. Внешнее давление вызывает обратный процесс — выход растворителя из раствора. При определенной нагрузке на поршень наступит динамическое равновесие между скоростями входящих в цилиндр и выходящих из него частиц растворителя. Давлеиие, которое нужно приложить к раствору, чтобы осмос прекратился, называется осмотическим давлением. [c.244]

    Рассмотрим, что происходит в приборе, изображенном на рис. 102. Из наружного сосуда вода будет проходить во внутренний и подниматься по трубке, соединенной с внутренним сосудом. При этом будет повышаться гидростатическое давление, под которым находится раствор во внутреннем сосуде. Вследствие этого скорость перехода молекул воды из внутреннего сосуда в наружный увеличивается. Наконец/ при некоторой высоте к столба раствора в трубке скорости прохождения воды из наружного сосуда во внутренний и из внутреннего в наружный сравняются, и подъем жидкости в трубке прекратится. Давление, которое отвечает такому равновесию, может служить количественной характеристикой явления осмоса. Оно называется осмотическим давлением. Таким образом, осмотическое давление равно тому давлению, которое нужно приложить к раствору, чтобы привести его в равновесие с чистым растворителем, отделенным от него полупроницаемой перепонкой. [c.304]

    Опыт В показывает, что осмотическое давление пропорционально концентрации раствора. Поскольку непосредственное измерение осмотического давления с помощью осмометра требует значительного количества времени, в этом опыте измеряют скорость проникновения растворителя через полупроницаемую мембрану, которая пропорциональна осмотическому давлению. [c.51]

    Когда разность между уровнями раствора и растворителя равна осмотическому давлению или на раствор накладывается давление водяного столба, равное осмотическому давлению раствора, то скорость проникновения растворителя через полупроницаемую мембрану равна нулю. Измерив скорость прохождения растворителя при нескольких значениях давления водяного столба, можно измерить осмотическое давление экстраполяцией на нулевую скорость. (Метод нулевой скорости). (Рис. 124, прямая АВ). [c.287]

    Скорость роста дрожжей зависит от разности осмотического давления в клетке II в сусле. Чем она больше, тем быстрее размножаются дрожжи. Поэтому более активное физиологическое состояние дрожжей наблюдается при сбраживании мелассы по двухпоточному способу. [c.202]

    Влияние температуры на скорость химической реакции во много раз значительнее, чем на ряд других процессов, таких, как, например, скорость диффузии, изменение вязкости среды, поверхностное натяжение, осмотическое давление и т. д. [c.135]

    Осмотическое давление. Раствор представляет собой однородную систему. Частицы растворенного вещества и растворителя находятся в беспорядочном тепловом движении и равномерно распределяются по всему объему раствора. Однако движение частиц растворенного вещества и растворителя может стать направленным, если привести в соприкосновение два раствора с разными концентрациями (С1 и С2). Молекулы растворителя и растворенного вещества будут диффундировать преимущественно в том направлении, где их концентрация ниже. Так, например, если С > С2, то молекулы растворителя с большей скоростью будут переходить в раствор с концентрацией С , а молекулы растворенного вещества — в раствор с концентрацией Сг. Такая двусторонняя диффузия приведет к выравниванию концентраций С = С ). [c.151]

    Соотношение между понижением давления пара растворов и осмотическим давлением. Итак, давление пара раствора ниже давления пара чистого растворителя потому, что скорость испарения раствора ниже скорости испарения чистого растворите.ля при той же температуре. [c.146]


    Активность, коэффициент активности. Межионное взаимодействие, а также сольватация ионов уменьшает не только скорость их движения, но и осмотическое давление растворов, величину понижения давления пара над ними и т. п. Все это может привести к неправильному выводу о том, что в растворе имеется меньше ионов, чем в действительности. Так, измерение электропроводности показывает кажущуюся неполную диссоциацию сильных электролитов [c.34]

    Иллюстрацией осмотического давления может служить рис. 69. В левом отделении прибора находится чистый растворитель, в правом — раствор. Эти две жидкости отделены друг от друга полупроницаемой мембраной (например, мембраной из целлофана). Поры в мембране достаточно велики, чтобы через них свободно проходили молекулы растворителя, но мембрана препятствует проникновению молекул растворенного вещества из правой части сосуда в левую. Скорость перехода растворителя из левой части сосуда в правую в начальный момент больще, чем скорость его перемещения в обратном направлении. Поэтому высота столба жидкости в правой части сосуда увеличивается до тех пор, пока не будет достигнуто равновесие, при котором разность уровней жидкости в левой и правой частях (/г) отвечает осмотическому давлению. [c.178]

    Динамический метод основан на том, что осмотическое давление компенсируется наложенным на раствор переменным противодавлением. Осмотическое давление вычисляется на основании измерения скорости проникновения растворителя через мембрану. Преимущество динамического метода заключается в быстроте измерений. [c.180]

    На рис. 71 представлен компенсационный осмометр А. В. Ду-манского. Осмотическая ячейка 6 соединяется с мембраной 7, аспиратором 1 и манометром 3. Ячейку и внешний сосуд помещают в термостат 5. Поднятием верхней части аспиратора 2 регулируется внешнее давление таким образом, чтобы оно было больше или меньше осмотического давления. При избыточном внешнем давлении мениск в капилляре 4 опускается вниз со скоростью V], пропорциональной избыточному давлению р —я. При пониженном внешнем давлении мениск поднимается со скоростью V2, пропорциональной разности я—рг, тогда отношение скоростей перемещения растворителя по капилляру и /и2 будет равно отношению разностей давлений, обусловливающих поднятие или опускание мениска в капилляре, т. е. [c.180]

    Иногда для более точного измерения осмотического давления я осмотическую ячейку, заполненную раство- ром данной концентрации, соединяют с манометром и источником внешнего давления р. Постепенно изменяя внешнее давление р, наблюдают за скоростью всасывания V воды из сосуда А (см. рис. 39) в ячейку. [c.213]

    Измерив на опыте эквивалентную электропроводность исследуемого раствора X, нетрудно определить степень диссоциации <1. Следует заметить, что любой способ измерения электропроводности растворов связан с изменениями и( параметров, при этом значения степени диссоциации, определяемые различными методами, оказываются довольно близкими между собой только лишь для слабых электролитов. Для сильных же электролитов, степень диссоциации которых весьма высока, прищлось создать особую теорию, учитывающую влияние на скорость движения ионов сил электростатического притяжения и отталкивания. Согласно этой теории принимают диссоциацию сильных электролитов 100%-ной. Если принять такое предположение, то возникает вопрос почему же измерение электропроводности осмотического давления, понижение температуры замерзания или повышение температуры кипения растворов приводит к заключению о якобы неполной диссоциации сильных электролитов. Основу такого несоответствия эта теория видит в неучтенных силах электростатического притяжения и отталкивания между ионами. Действительно, в результате наличия между-ионовых сил каждый ион окружен ионной атмосферой (рис. 43), т. е. щарообразным слоем из противоположно заряженных ионов. Действующие на данный ион силы притяжения взаимно уравновешиваются в том случае, когда на раствор не действуют внешние электрические силы, не происходит диффузии, химических реакций и других подобных процессов. [c.77]

    Различие в размерах частиц дисперсной фазы отражается на молекулярно-кинетических свойствах дисперсных систем. Частицы суспензий не участвуют в броуновском движении, они не способны к диффузии и как следствие в отличие от лиозолей суспензии седиментационио неустойчивы и в них практически отсутствует осмотическое давление. Молекулярно-кинетическое движение частиц лиозолей обусловливает энтропийное отталкивание частиц, обеспечивает равномерное их распределение по объему дисперсионной среды. Энтропийный фактор агрегативной устойчивости у суспензий отсутствует, скорость их коагуляции не зависит от броуновского движения (и не может следовать закономерностям теории кинетики коагуляции Смолуховского), а связана в основном со свойствами прослоек дисперсионной среды. Действия других факторов агрегативной устойчивости в суспензиях и лиозолях имеют много общего. [c.343]

    Осторожное выделение белков из живых организмов позволило узнать очень многое о их свойствах. Каждый белок имеет вполне определенный молекулярный вес (от 10000 до нескольких миллионов), а отдельные группы белков можно выделить и исследовать благодаря тому, что каждый из них обладает различной скоростью диффузии. Например, определение молекулярного веса белка осуществляется методом измерения осмотического давления. Многие белки удается получить в кристаллической форме, а это позволяет исследовать их строение методом дифракции рентгеновских лучей. [c.482]

    Различие в размерах частиц дисперсной фазы отражается на молекулярно-кинетических свойствах дисперсных систем. Частицы суспензий не участвуют в броз новском движении, они не способны к диффузии и, как следствие, в отличие от лиозолей суспензии седиментационно неустойчивы, в них практически отсутствует осмотическое давление, скорость коагуляции не зависит от теплового столкновения частиц (и не может следовать закономерностям теории кинетики коагуляции Смолуховского), а связана в основном со свойствами поверхностных слоев. [c.395]

    Согласно закону действия масс, скорость химической реакции пропорциональна активным массам реагентов. Этот закон был впервые установлен на основании результатов экспериментальных наблюдений Гульдбергом и Вааге в 1864—1867 гг. (см., например, литературу ), а затем теоретически обоснован на базе теории молекулярных столкновений в жидкостях и газах. В первоначальной трактовке под активной массой понимали концентрацию в единицах массы на единицу объема, но время от времени высказывались и другие интерпретации данного термина. Так, например, Аррениус предполагал, что осмотическое давление, а Вант-Гофф считал, что растворимость, так же как и концентрация, связаны с активной массой. [c.22]

    Влияние изменения концентрации раствора можно в качественной форме легко представить. Очевидно, когда концентрация равна нулю, то и осмотическое давление равно нулю. По мере растворения сначала небольших, потом все больших количеств растворяемого вешества будет увеличиваться различие в скоростях перехода воды через полупроницаемую перегородку в разных направлениях и, следовательно, будет возрастать осмотическое давление. Опытные данные позволяют установить, что в достаточно разбавленных растворах осмотиче- [c.304]

    Распределение констант седиментадип для различных фракций полимера можно связать с распределением по молекулярным весам в образце, так как скорость седиментации пропорциональна молекулярному несу полимера. Однако, как и в случае определения осмотического давления, установление скорости седиментации полимеров с длинными гибкими цепями вызывает некоторые. атрудпения. [c.81]

    Все эти требования трудносовместимы. Существует около 50 конструкций осмометров, из которых даже наилучшие, например осмометр Фуосса и Мида (1943 г.), не лишены недостатков. Разработано также множество рецептов для приготовления полупроницаемых мембран в последнее время их изготавливают в основном из синтетических полимеров. Особыми, весьма сложными методами удается изготавливать мембраны, с помощью которых можно определять молекулярные массы до 2000, однако обычно считается, что мембранами можно разделить (не пропускать) молекулы с массой более 30 ООО. Кроме методов, основанных на измерении равновесного уровня жидкости в осмометре, используются и остроумные динамические методы, в которых осмотическое давление рассчитывается из скорости проникновения растворителя в осмотическую ячейку. Это значительно сокращает время измерений. [c.44]

    Питание микроорганизмов осуществляется через поверхность их тела путем диффузии в результате разных концентраций веществ внутри и вне организма. Движение растворенных веществ лод действием осмотического давления происходит в сторону мень-щих концентраций, воды — в сторону больших. Так как поступающие в клетку вещества вовлекаются в биохимические процессы и усваиваются микроорганизмом, равновесия их внутри клетки и. вне ее практически не наступает. Однако проникновение вещества -В клетку не всегда объяснимо осмосом. Цитоплазматическая мембрана обладает избирательной способностью отличать нужные вещества от ненужных и извлекать их из растворов с малой концентрацией, не пропуская вредные для клетки вещества, содержащиеся в среде в значительных концентрациях (до определенных лределов). Так как поверхность клеток на единицу их массы лредставляет громадную величину, то процессы обмена и размножения микроорганизмов происходят с большими скоростями, и этим объясняются интенсивные биоповреждения некоторых материалов, на которых идут такие процессы. Давление в клетке создается поступившими в нее веществами, продуктами обмена и веществами клеточного синтеза. В связи с высоким осмотическим давлением внутри клетки создается постоянный приток в нее воды. Этим можно объяснить способность микроорганизмов развиваться на сравнительно сухих средах. Так, микрогрибы способны повреждать материалы, имеющие влажность 15...20 % и ниже. [c.15]

    Таким образом, замедление процессов набухания и сжатия зерен ионообменных смол является методом уменьшения интенсивности осмотического разрушения зерен ионитов при использовании концентрированных растворов реагентов для регенерации ионообменных фильтров. Поскольку скорость изменения объема зерна ионита зависит от разности осмотических давлений в зерне и во внешнем растворе, следует примегшть ступенчатое повышение концентрации раствора в начале регенерации смолы и постепенное уменьшение концентрации раствора в кон- [c.213]


Смотреть страницы где упоминается термин Осмотическое давление скорости: [c.270]    [c.514]    [c.10]    [c.146]    [c.170]    [c.377]    [c.68]    [c.349]    [c.217]    [c.317]    [c.284]    [c.165]    [c.214]    [c.176]    [c.292]    [c.332]    [c.321]    [c.120]    [c.10]   
Практическое руководство по определению молекулярных весов и молекулярно-весового распределения полимеров (1964) -- [ c.71 ]




ПОИСК





Смотрите так же термины и статьи:

Определение осмотического давления растворов полимеров по методу нулевой скорости

Осмотическое давление

Скорость давлении

Фаг осмотический шок



© 2024 chem21.info Реклама на сайте