Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Альфа-частицы энергия

    Физики принялись за создание устройств, предназначенных для ускорения заряженных частиц в электрическом поле. Заставив частицы двигаться с ускорением, можно было повысить их энергию. Английский физик Джон Дуглас Кокрофт (1897—1967) совместно со своим сотрудником ирландским физиком Эрнестом Томасом Син-тоном Уолтоном (род. в 1903 г.) первыми разработали идею ускорителя, позволявшего получать частицы с энергией, достаточной для осуществления ядерной реакции. В 1929 г. такой ускоритель был построен. Спустя три года эти же физики бомбардировали атомы лития ускоренными протонами и получили альфа-частицы. Эту ядерную реакцию можно записать следующим образом  [c.171]


    Альфа-частицы и их свойства. а-Частицы — это ядра гелия Ше. Каждая частица несет два элементарных положительных заряда масса частицы в 4 раза больше массы 1/12 изотопа углерода Будучи выброшены из ядра, а-частицы движутся в зависимости от их энергии со скоростью от 14 ООО до 20 600 км в секунду. Они характеризуются длиной пробега. [c.55]

    АЛЬФА-ЧАСТИЦА (а-частица) - частица, идентичная ядру атома гелия состоит из двух протонов и двух нейтронов, имеет заряд 2+, массовое число 4. А.-ч. испускаются при а-распаде радиоактивных изотопов различных элементов. При прохождении через вещество А.-ч. сильно ионизирует атомы среды, быстро теряет свою энергию, имеет очень малую длину свободного пробега, что в значительной степени зависит от природы поглощающего А.-ч. вещества. А.-ч. используют для осуществления целого ряда ядерных реакций. [c.20]

    Начиная с 1930 кща разработка и усовершенствование ускорителей частиц привела к том>, что стало возможным получить достаточно высокие энергии, необходимые для проведения реакции слияния ядер. Первый искусственный радиоактивный изотоп в 1934 году получили Фредерик и Ирен Жолио-Кюри. Они бомбардировали алюминий альфа-частицами, получаемыми при распаде фосфора-ЗО  [c.333]

    Рентгеновские лучи, альфа-частицы, гамма-лучи, нейтроны и др. излучения большой энергии также вызывают в веществе глубокие физико-химические изменения и инициируют разнообразные реакции. Так, прн действии ионизирующих излучений на кислород образуется озон, алмаз превращается в графит, оксиды марганца выделяют кислород и т. д. При облучении смеси азота и кислорода или воздуха образуются оксиды азота, в присутствии кислорода ЗОз переходит в 50з и т. д. При действии ионизирующих излучений на воду происходит ее радиолиз. [c.221]

    Резерфорд первый синтетическим, искусственным путем получил новые ядра. Однако эти ядра не были радиоактивны. Хотя Резерфорд и продолжал свою работу, он был ограничен средними энергиями альфа-частиц. Но трансмутация элементов - превращение одного элемента в другой - стала реальностью. [c.333]

    Хлор, бром и иод содержатся в виде галогенидов в морской воде, а также в соляных отложениях. Копией грация иода в подобных источниках очень мала. Однако иод накапливается в некоторых водорослях эти водоросли собирают, сушат, сжигают и из золы извлекают иод. В промышленных масштабах иод получают также из водного раствора, выходящего вместе с нефтью из нефтяных скважин, например в Калифорнии. Фтор входит в состав таких минералов, как флюорит, криолит и фторапатит. Только первый из этих минералов является промышленным источником фтора для химической индустрии. Все изотопы астата радиоактивны. Наибольшей продолжительностью жизни из них обладает астат-210 этот изотоп, имеющий период полураспада 8,3 ч, распадается главным образом в результате электронного захвата. Астат был впервые получен в результате бомбардировки висмута-209 альфа-частицами высокой энергии реакция осуществляется по уравнению [c.289]


    Чрезвычайно редко встречаются такие ядра-мишени, которые дают один специфический тип ядерной реакции. Наоборот, данное ядро в результате бомбардировки альфа-частицами подвержено нескольким различным типам ядерных реакций, например возможны (а, п)- и (а, р)-реакции и большое число других, менее вероятных реакций. Кроме того, разнообразие возможных реакций увеличивается при использовании разных бомбардирующих частиц (нейтронов, протонов, дейтронов, фотонов и даже заряженных атомов тяжелых элементов). Для каждого из этих процессов атомное ядро будет иметь специфическое поперечное сечение. В качестве примера рассмотрим облучение теллура фотонами, имеющими энергию до 70 Мэе. Такое облучение приведет в основном к у, п)-и (V. р)-реакциям, причем преобладающей будет (у, /г)-реакция. Однако можно наблюдать довольно большое число менее обычных реакций. Они могут охватывать диапазон от обычных реакций, таких, как (7, 2п), до таких редко встречающихся реакций, как (7,ЗрЗ/г)-реакция. Общее поперечное сечение превращения будет определяться первыми двумя типами реакций. Однако другие реакции также будут вносить свои вклады. Далее, если использовать другую область значений энергий фотона, то окажется, что соотношение поперечных сеченийУразличных реакций будет изменяться. Если энергия фотона уменьшится, то можно ожидать, что (у, /г)-реакция будет вносить еще больший вклад в поперечное сечение, а если энергия фотона увеличится, то увеличится вклад других реакций. В общем случае следует ожидать, что уменьшение энергии падающей частицы будет благоприятствовать испусканию незаряженной частицы. Это, по-видимому, связано с повышением потенциального барьера для излучаемой частицы при увеличении ее заряда. В общем случае, если падающая частица обладает более низкой энергией, происходит испускание нейтрона или протона. Эти тенденции хорошо иллюстрируются рис. 11-14, на котором приведена зависимость поперечного сечения индуцированных альфа-частицами реакций для N1 от энepгии . Из рис. 11-14 видно, что поперечное сечение реакции зависит не только от ядоз-мишани и типа реакции, но также и от энергии бомбардирующей частицы. [c.416]

Рис. 11-8. Потенциальный барьер, преодолеваемый при распаде альфа-частицами трех различных энергий. Рис. 11-8. <a href="/info/8791">Потенциальный барьер</a>, преодолеваемый при <a href="/info/69342">распаде альфа</a>-частицами трех различных энергий.
    Проводившиеся в Бостоне в 1965 и 1966 г. исследования радиоактивного поражения людей после серии испытаний атомных бомб показали, что в среднем каждый человек имеет плутониевую активность около 2 пикокюри. Сколько ядерных распадов в секунду происходит при таком уровне активности Если каждая альфа-частица несет с собой 8 10 Дж энергии и если принять, что средняя масса человека равна 75 кг, то какую дозу излучения (в радах) получает организм человека в течение года при таком уровне содержания в нем плутония Вычислите также соответствующую эквивалентную дозу излучения в бэрах. [c.279]

    Поток альфа-частиц представляет собой поток ядер гелия, имеющих положительный заряд. Их энергия лежит в пределах от 3 до 9 МэВ. Чем больше энергия частицы, тем больше [c.52]

    Плутоний-239 испускает альфа-частицы, обладающие энергией приблизительно 5 -10 кДж/моль. Период полураспада этого изотопа составляет около 24 ООО лет. Считается, что плутоний наиболее опасен при вдыхании пыли, в которой он содержится. Почему вдыхание пыли, содержащей плутоний, представляет намного большую опасность, чем просто облучение радиоактивным плутонием из окружающей среды  [c.279]

    Однажды Гейгер подошел ко мне и сказал Не считаете ли Вы, что юный Марсден, которого я обучаю методам наблюдения радиоактивности, мог бы начать небольшое исследование Я был с ним согласен и ответил Почему бы не поручить ему проверить, не рассеиваются ли отдельные альфа-частицы на большие углы Откровенно говоря, я не верил, что это возможно, так как мы знали, что альфа-частица-очень быстрая и массивная частица, обладающая большой энергией, и если рассеяние обусловлено накапливаюшимся эффектом ряда небольших рассеяний, шансы рассеяния альфа-частицы в обратном направлении очень малы. И вот я помню, что через два-три дня Гейгер пришел ко мне в большом возбуждении и сказал Нам удалось обнаружить, что некоторые альфа-частицы возвращаются назад... Это была самая невероятная вещь, которая произошла за всю мою жизнь. Это было почти так же невероятно, как если бы вы выстрелили 15-дюймовым снарядом по куску папиросной бумаги, а снаряд рикошетом вернулся назад и попал в вас . [c.332]

    Поток бета-частиц — это поток электронов или позитронов, возникающих при радиоактивном распаде. Скорость их близка к скорости света, максимальная энергия лежит в диапазоне 0,05—3,5 МэВ. Ионизирующая способность бета-частиц ниже, а проникающая способность выше, чем альфа-частиц, так как они обладают значительно меньшей массой и большей скоростью. [c.53]


    Существование таких моноэнергетических групп свидетельствует о наличии определенных энергетических уровней в ядре точно так же, как это было найдено для внеядерной электронной структуры атома. Различные альфа-группы должны соответствовать различным ядерным энергетическим уровням. И действительно, было обнаружено, что если происходит альфа-распад изотопа в виде двух и большего числа групп альфа-частиц, то он всегда сопровождается испусканием гамма-лучей. Наблюдаемые гамма-лучи — это результат переходов между различными уровнями и поэтому могут быть мерой относительных энергий этих уровней. Следовательно, можно построить диаграммы ядерных энергий. Пример такой диаграммы, или схемы распада приведен на рис. 11-6. [c.394]

    В последующие пять лет Резерфорд провел серию других ядерных реакций с использованием альфа-частиц. Однако возможности его были ограничены, поскольку радиоактивные элементы давали альфа-частицы только со средней энергией. Необходимы были частицы с гораздо большими энергиями. [c.170]

    В расчете на 1 моль ядер Li АЕ = = 3,09 10 Дж. 20.36. а) АЕ = = 1,7010 Дж/моль б) АЕ = = 3,15-10" Дж/моль в) АЕ = = 1,77 10 Дж/моль. 20.38. Энергия связи в расчете на один нуклон максимальна для ядер с массовыми числами вблизи 50 (см. рис. 20.8). Поэтому 2 Со должен иметь наибольший дефект массы в расчете на один нуклон. 20.40. Как °Sr, так и Ва, весьма вероятно, включаются в цепь питания, замещая кальций или, возможно, цинк. Ни Н2, ни Кг не накапливаются в живых системах. 20.42. Вещества, излучающие альфа-частицы, представляют опасность только при их попадании в организм (вдыхание или проглатывание), поскольку альфа-частицы не обладают большой проникающей способностью. Плутоний плохо выводится из организма и, оставаясь в нем, вызывает его радиационное разрушение в течение длительного времени. 20.46. а) Добавьте С1 в виде хлорида (соль) к воде. Растворите I3 OOH обычным способом. Через некоторое время перегонкой отделите летучие вещества от соли I3 OOH является летучим веществом, и его можно отделить перегонкой от воды. Определите радиоактивность летучего вещества. Если обмен хлора успел произойти, то летучее вещество должно быть радиоактивно. [c.477]

    При работе с органическими мечеными соединениями приходится иметь дело практически только с бета- и гамма-излучением. Отрицательные бета-лучи — это электроны, летящие со скоростями 100 000—300 ООО км1сек. Энергия этих частиц имеет непрерывный спектр от максимальной величины, которая составляет обычно 0,01—10 Мэе, до очень малых величин Средняя энергия бета-частиц составляет примерно одну треть их макси мальной энергии. В отличие от альфа-частиц бета-частицы не имеют прямо линейной траектории, длина пробега бета-частиц в воздухе достигает мак симально нескольких метров. Бета-излучение, так же как и альфа-лучи ионизирует среду, через которую проходит однако эффективность иониза ции для бета-излучения существенно ниже. Отрицательный бета-распад был обнаружен как у природных, так и у искусственных радиоизотопов. [c.644]

    Одной из наиболее интересных черт альфа-распада оказалась взаимозависимость между периодом полураспада и энергией испускаемых альфа-частиц. Можно ожидать, что при повышении энергии альфа-частицы период полураспада соответственно понизится. Это в точности и наблюдали. Однако величина эффекта абсолютно неожиданна. Для изотопа 232-р . альфа-частицы имеют энергию около 4 Мэе, а для Ро они имеют энергию около 8,8 Мэе. Однако период полураспада равен l,4 10 лет, в [c.395]

    Предполагается, что при температуре 100 млн. градусов и при плотности 10 000 Г-СМ- в центре звезды устанавливается равновесие между тремя альфа-частицами и возбужденным ядром углерода-12 с энергией на 7,653 МэВ выше, чем энергия этого ядра в нормальном состоянии. Возбужденное ядро С может переходить в нормальное состояние путем испускания фотона. Могут происходить и другие известные ядерные реакции, которые и приводят к синтезу всех тяжелых нуклидов. [c.622]

    С классической точки зрения может показаться, что именно такой энергетический порог, определенный из значения Q, будет необходим для бомбардировки незаряженными частицами, такими, как гамма-лучи или нейтроны. Напротив, если бомбардирующие частицы имеют заряд, может показаться, что минимум их энергии должен быть больше потенциального барьера бомбардируемого ядра, прежде чем произойдет ядерное превращение. Это, однако, не вполне соответствует действительности. Точно так же, как существует конечная вероятность того, что альфа-частица вылетит из ядра в результате туннельного эффекта, существует и конечная вероятность того, что бомбардирующая заряженная частица тоже проникнет через потенциальный барьер. Однако эти два процесса [c.414]

    Мэб, испускаемыми найдено, что рассеиваемые альфа-частицы не подходят близко к ядрам атомов урана и отклоняются по закону Кулона. Само ядро испускает альфа-частицы с энергией только 4,2 Мэе. Поэтому непонятно, как альфа-частица с такой энергией может преодолеть потенциальный барьер высотой, по крайней мере, 8,78 Мэе. [c.396]

    Мэе, то с этих позиций довольно трудно понять, как альфа-частица с энергией только 4,2 Мэе может вылететь из этого ядра. В действительности, следует рассмотреть три различных случая ( i, Е , Es) для альфа-частицы в ядре, описываемой потенциальной кривой (рис. 11-8). Для первого случая (Е ) энергия альфа-частицы больше потенциального барьера, и она вылетит из ядра, как только достигнет его поверхности. Это приведет к спонтанному распаду с неизмеримо малым периодом полураспада. Для [c.396]

    Несколько лучшее понимание природы этих испускаемых частиц, или лучей пришло с появлением магнитного метода исследования-Еще в 1899 г. было найдено, что бета-лучи отклоняются в магнитном поле, причем вид отклонения показывал, что они очень похожи на электроны с большой энергией. Одновременно первые исследования пока зали, что альфа-лучи, напротив, не чувствительны к магнитному полю. Однако, продолжая исследование излучений, Резерфорду удалось в 1903 г. показать, что в достаточно сильном магнитном поле отклоняются и альфа-частицы. Направление отклонения свидетельствовало о том, что альфа-частицы заряжены положительно, а расчет отнощения заряда к массе убедил в том, что они могут быть дважды ионизированными атомами гелия. Эта идея подтверждалась постоянным присутствием гелия в урановых рудах, а впоследствии была доказана постановкой следующего опыта. Радиоактивный образец запаивали в ампулу с достаточно тонкими стенками, сквозь которые могли проникать альфа-частицы, и ампулу помещали в ва-куумированный стеклянный сосуд. Через несколько дней в сосуде оказывалось достаточное для обнаружения спектральным методом количество гелия. [c.384]

    Нейтрино — частица с массой покоя, равной нулю, и со спином она отличается от фотона главным образом значением спина (фотон имеет спин 1). Предположение о существовании нейтрино высказал в 1927 г. В. Паули для объяснения, казалось бы, совершенно очевидно, го несоблюдения принципа сохранения энергии в процессе испускания бета-частицы (электрона) радиоактивным ядром (разд. 20.13). Данные наблюдений показали, что все радиоактивные ядра одного я того же вида испускают альфа-частицы, подобно На (рис. 20.6), обладающие одной и той же энергией, что и следовало ожидать согласно закону сохранения массы-энергии, но в то же время было известно, что некоторые радиоактивные атомы, например ФЬ, испускают бета-частицы разной энергии. Паули, а позже и Ферми предполагали, что при радиоактивном распаде ядра с испусканием бета-частицы испускается также частица с небольшой или нулевой массой покоя и при этом энергия реакции распределяется между бета-частицей и другой частицей, которую Ферми назвал нейтрино. [c.597]

    Мэе, для этого превращения фактически необходима большая энергия. Чтобы не нарушить закона сохранения количества движения. Vis части кинетической энергии бомбардирующей альфа-частицы должны превратиться в кинетическую энергию продуктов. Это значит, что будет необходимо (18/14)-Ц, 18 Мэе) = = 1,49 Мэе для того, чтобы удовлетворить энергетическое требование и не нарушить закона сохранения количества движения. Таким образом, альфа-частица должна обладать, по крайней мере, этим количеством энергии до того, как произойдет превращение. Такое количество энергии называют энергетическим порогом реакции J N(a, р). Другими словами, это кинетическая энергия, необходимая для того, чтобы превращение стало энергетически возможным. I [c.414]

    Точный расчет допустимых потоков на ткани кроме принадлежности их к определенной группе критических органов (см. табл. 1) требует учета поглощения и рассеяния частиц в экранирующих тканях. При оценке дозы внешнего облучения потоком слабопроникающих излучений (бета-частицы и электроны, альфа-частицы, протоны и другие заряженные частицы небольшой энергии) следует иметь в виду, что толщина слоя тканей и жидкостей, экранирующих хрусталик глаза, принята равной 300 мг см толщина кожи — 100 мг1см , в том числе толщина эпидермиса кожи, экранирующего базальиый слой эпителия, — 7 мг1см . [c.233]

    Расчет за1цитиых экранов базируется на законах взаимодействия различных видов излучений с веществом. Защита от альфа-1кзлумеинн достаточно проста, так как альфа-частицы нормальной энергии поглощаются слоем живой ткапи 60 мкм, в то время как толщина эпидермиса равна 70 мкм. Слой воздуха в несколько сантиметров или лист бумаги являются достаточной защитой от альфа-частиц. [c.58]

    Альфа-частицы, движущиеся со скоростью около 20000 км сек, обладают большой кинетической энергией. Если а-частица встречает на своем пути ядро какого-либо другого атома, то она может внедряться в это ядро. Получается новое неустойчивое ядро ( компаунд-ядро ), которое в следующий момент разрушается. Использование кинетической энергии а-частиц для синтеза новых ядер будет описано ниже (см. Ядерные реакции , стр. 61). [c.57]

    Стабильность ядра характеризуется также вероятностью, с которой может произойти распад этого ядра. Зависимость потенциальной энергии частицы в зависимости от ее расстояния от центра ядра описывается кривой, изображенной на рис. 4. Положительные участки соответствуют отталкиванию частицы от ядра, отрицательные — притягиванию. Участок а — Ь кривой рис. 4 отвечает кулоновскому взаимодействию какой-либо положительно заряженной частицы, например, альфа-частицы с ядром. По мере удаления частицы от ядра энергия отталкивания уменьшается. На расстояниях от ядра порядка 10 м кулоновское взаимодействие заменяется ядерным, т. е. частица будет не отталкиваться, а притягиваться к ядру (участок — 0, следовательно, для удаления частицы из ядра необходимо энергию затратить. [c.12]

    При альфа-распаде ядро любого изотопа элемента № 102 превращается в ядро одного из изотопов фермия (элемент № 100) и ядро гелия (альфа-частицу). Энергия а.тгьфа-частиц при этом будет строго определенной. Следовательно, [c.460]

    При рассмотрении взаимодействий с электронной оболочкой следует обратить внимание на два важных свойства 1) в противоположность бета-излучениро можно провести четкую границу между исходным и вторичным излучением. Последнее состоит из электронов и фотонов 2) статистически энергия, переданная электрону мишени входящей частицей, зависит от соотношения масс обеих взаимодействующих частиц. Протоны, дейтоны и альфа-частицы с энергиями около I Мэе могут сообщать электрону энергию в количестве лишь 1 кэв. Поэтому, когда мишени состоят из элементов с атомными номерами большими 10, при облучении частицами с энергией менее нескольких миллиоьюв электрон-вольт только внешние электроны могут взаимодействовать с поступающими частицами. Кроме того, в случае протонов, дейтонов и альфа-частиц, энергия которых значительно больше 1 кэв, основным фактором, обусловливающим рассеяние энергии, является возбуждение, а не ионизация, тогда как при бета-излучении этот процесс становится заметным лишь для энергий меньших 100 эв. [c.200]

    Альфа-частицы с энергией 4,13 МэВ испускаются при превращении 238и в находящийся в возбужденном ядерном состоянии. Когда [c.414]

    Несмотря на некоторую простоту такого рассмотрения альфа-распада, получаемые качественные результаты вполне обнадеживающие. Механизм альфа-распада объясняется проникновением частицы сквозь потенциальный барьер наиболее удовлетворительной чертой этого механизма является то, что средняя продолжительность жизни изотопа соответствует приблизительно реальной величине. Кроме того, необычное соотргошение между периодом полураспада и энергией альфа-частицы становится вполне понятным. Экспоненциальный член в уравнении (11-14) приводит к экстремальной зависимости О и, следовательно, периода полураспада от энергии альфа-частицы. Расчеты в рамках этой модели показывают вполне удовлетворительное качественное совпадение. Итак, несмотря на то что неизвестен вид потенциального барьера, величины ядерных сил и даже радиуса ядра, тем не менее с помощью этой модели можно получить вполне удовлетворительные результаты вследствие чувствительности коэффициента прозрачности потенциального ба ьера. [c.400]

    Результаты экспериментальных исследований по рассеянию гелио-нов (альфа-частиц) золотой фольгой показывают, по мнению Резерфорда и его сотрудников (разд. 3.4), что взаимодействие гелиона и более тяжелого ядра происходит без отклонения от кулоновского отталкивания на расстояниях, превышаюш,их примерно 10 фм. Другие эксперименты привели к довольно точным значениям размеров ядер и позволили определить функцию распределения вероятности нуклонов внутри ядер. Исследование рассеяния электронов высокой энергии, проводившееся, в частности, американским физиком Робертом Хофстадтером (род. в 1915 г.) и его сотрудниками, привело к результатам, аналогичным тем, которые показаны на рис. 20.13. Установлено, что ядерная плотность постоянна и равна приблизительно 0,17 нуклона на 1 фм в центральной части каждого ядра (за исключением самых легких) затем она падает до нуля при изменении радиуса на 2 фм (от плотности, составляющей 90% максимального значения, до плотности, составляющей 10%). Радиус ядра (измеренный до плотности, составляющей [c.623]

    Некоторое время думали, что альфа-частицы, испускаемые атомными ядрами данного изотопа, моноэнергетические. Однако более точные исследования показали, что это не всегда так. В большинстве случаев спектр энергий альфа-частиц состоит из двух или большого числа близко расположенных моноэнергетических групп. Например, при распаде испускается одна моноэнергетиче- [c.394]

    Гамовым и независимо от него Гарнэем и Кондоном на основе методов квантовой механи-ки" . Следуя за их рассуждениями, можно показать, что в первом кваитозомеханиче-ском приближении потенциальную яму надо рассматривать как квадратную яму (рис. 11-9), в которой альфа-частица предполагается движущейся свободно. Хотя модель, допускающая наличие в ядре альфа-частицы как такозой и то, что ядро— простая потенциальная яма, является крайне упрощенной, ее применение оправдывается тем, что и такая модель дает вполне хорошие результаты. Рассмотрение альфа-частицы с энергией Е показывает, что существует конечная вероятность вылета частицы из ядра путем просачивания сквозь потенциальный барьер (так называемый туннельный эффект). Это подтверждается существованием решения волнового уравнения для частицы вне барьера. [c.397]

    В известном смысле абсолютно различны. В соответствии с моделью распада ядра, альфа-чЗстица с большой частотой имеет энергию, соответствующую энергии стенок потенциального барьера, и поэтому вероятность ее проникновения через потенциальный барьер велика Бомбардирующая же альфа-частица имеет только одну определенную энергию и встречается с ядром только один раз. Казалось бы, это должно привести к исчезающе малой вероятности проникновения. Однако это не так. Как видно из рис. 11-7, толщина потенциального барьера довольно существенно уменьшается вблизи максимума, и, если падающая заряженная частица обладает энергией, соответству1сщей энергии вблизи вершины потенциального барьера, то она имеет существенную вероятность проникновения сквозь него. Однако вероятность проникновения для такой заряженной частицы очень мала, если ее энергия все же не будет несколько больше величины Q. Следовательно, значение Q можно считать теоретическим порогом для таких бомбардировок, но на практике необходимо иметь энергии, значительно превышающие эту величину. [c.415]

    Химические процессы, происходящие под действием ионизирующих излучений высокой энергии (рентгеновы лучи, альфа-частицы, гамма-лучи и т.д.). Излучения большой энергии вызывают в веществе глубокие изменения и инициируют различные реакции. Так, например, при действии ионизирующих излучений на кислород образуется озон, алмаз превращается в графит, а оксиды марганца выделяют кислород. [c.183]

    Ядерные реакции возникают при бомбардировке ядер фотоном, нейтронами, протонами, дейтронами, тритонами ( Н+), трелионами (зне2+) гелионами (альфа-частицами) или более тяжелыми ядрами. Примером может служить образование изотопа Р при бомбардировке обычного фосфора дейтронами с энергией 10 МэВ [c.614]


Смотреть страницы где упоминается термин Альфа-частицы энергия: [c.461]    [c.53]    [c.395]    [c.396]    [c.397]    [c.397]    [c.426]    [c.404]    [c.93]   
Действующие ионизирующих излучений на природные и синтетические полимеры (1959) -- [ c.26 ]

Основы общей химии Том 3 (1970) -- [ c.310 , c.318 , c.347 ]

Физические методы органической химии Том 3 (1954) -- [ c.188 ]




ПОИСК





Смотрите так же термины и статьи:

Альфа

Альфа-частица

Энергия частиц



© 2025 chem21.info Реклама на сайте