Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конфигурации геометрической определение химические методы

    Каждый из геометрических изомеров характеризуется своими физико-химическими свойствами. При этом различие в свойствах между цис-транс-формами часто отнюдь не меньше, чем между структурными изомерами. В этих различиях в большинстве случаев можно подметить определенные закономерности. Это позволяет использовать физические методы для определения конфигурации цис-транс-изомерных форм. [c.418]


    Здесь были разобраны принципы важнейших применяемых в настоящее время химических методов определения конфигурации геометрических изомеров с к. ч. 6 и иллюстрированы соответствующие методы на ряде простейших представителей цис-транс-изо-мерных комплексов. [c.171]

    Кроме химических методов определения геометрической конфигурации, разумеется, можно применять и физические. В частности, ценных результатов следует ждать от применения рентгенографического метода, а также (но крайней мере для соединений, относящихся к тину неэлектролитов) от измерения дипольных моментов. Однако пока соответствующие методы, в сожалению, еще не нашли в этом отношении широкого применения (стр. 227). [c.173]

    За последние годы к вопросу об определении конфигурации геометрически изомерных комплексных соединений привлекались многочисленные новые физико-химические и физические методы. Стоит отметить, что оценка эффективности химических методов определения конфигурации оказывается неодинаковой у разных авторов в зависимости от свойств объектов, на которых было преимущественно сосредоточено их внимание как исследователей. В частности, лица, больше работавшие с кобальтом и чаще сталкивавшиеся с явлениями изомеризации, склонны более критически относиться к химическим методам, чем специалисты по платине. [c.173]

    Реакции комплексов Р1(П) обычно происходят без перегруппировки поэтому химические способы могут служить для различия цис- п транс-изомеров. Для определения конфигурации геометрических изомеров могут быть использованы многие физико-химические методы, например рентгеноструктурный анализ, измерения дипольных моментов и анализ спектров поглощения. [c.21]

    Для определения конфигурации геометрических изомеров в ряду олефинов существуют четыре метода. Их можно сравнить с методами определения конфигурации энантиомеров (гл. 5) и особенно с методами, которые применяют для определения конфигурации геометрических изомеров в циклических соединениях (разд. 7-16). В настоящем разделе мы остановимся на двух из них, а именно на определении конфигурации, исходя из образования или раскрытия цикла, и на химической корреляции. Два других метода, основанные на физи- [c.311]

    Обычно наблюдается слабое различие в устойчивости цис- и транс-изомеров соединения, и можно оценить это различие термохимически, путем измерения их теплот гидрирования (гл. 12, разд. 3). Поскольку обычно тракс-форма более устойчива (и это очень заметно в том случае, если ненасыщенные атомы углерода связаны с объемистыми группами), термохимические измерения могут рассматриваться как химический метод определения конфигурации геометрических изомеров. [c.72]


    Столь тщательное рентгенографическое исследование не является, однако, исчерпывающим и связано с рядом дополнительных трудностей, помимо встречающихся нри определении структуры кристаллов мономерных веществ поэтому до настоящего времени этот метод применялся широко только для очень небольшого числа полимеров. Некоторые сведения, однако, можно получить и без такого тщательного рентгенографического исследования определение периода идентичности в направлении вытягивания и сравнение полученных величин с предполагаемой величиной периода для данной химической структуры при нормальных межатомных расстояниях и углах связи является простым и надежным методом в случае хорошо кристаллизующихся полимеров. Однако нельзя быть уверенным в точности этого метода, поскольку результаты, полученные с его помощью, зависят не только от химического строения, но и от геометрической конфигурации молекул. Не представляется возможным сделать какие-либо обобщения каждый случай нужно рассматривать как самостоятельную проблему. В дальнейшем будут приведены примеры вопросов, возникающих при этих исследованиях. В некоторых случаях для определения химического строения достаточно найти период идентичности, в других—для получения удовлетворительных данных о строении молекулы необходимо тщательное рентгенографическое исследование, включая определение размеров элементарной ячейки и расположения в ней атомов. [c.208]

    Использованный в этом случае прием является иллюстрацией весьма распространенного способа определения цис-транс-конфигу-рации—метода циклизации. Для определения геометрического строения молекул пользуются и другими методами. Так, вещество с неизвестной конфигурацией можно с помощью химических превращений перевести в вещество с известной конфигурацией (определение с помощью прямого химического перехода ). Выводы относительно <ггб -ш/7а с-конфигурации могут быть сделаны и на основании сравнения физических свойств (дипольных моментов, инфракрасных и ультрафиолетовых спектров, спектров ядерного магнитного резонанса и др.). [c.204]

    Электронография как экспериментальный метод органической химии применяется главным образом для определения геометрического строения молекул. Таким путем удается непосредственно определить положение отдельных атомов, рассчитать расстояния между химически связанными атомами и валентные углы, установить конфигурации определенных групп атомов, наименьшие расстояния между химически не связанными атомами и различные другие структурные параметры, Электронографические исследования провод ятся большей частью [c.742]

    В настоящей главе рассматриваются только шестичленные циклические соединения. Первый раздел посвящен определениям понятий и геометрически возможным конформациям простых систем. Во втором разделе излагаются основные методы исследования конформаций. В третьем разделе рассмотрено применение концепции несвязанной энергии к более сложным системам. Четвертый раздел посвящен рассмотрению тех химических и физических свойств, которые являются следствием конформаций. Эти свойства часто дают возможность получить некоторые сведения относительно конформаций еще более часто применение конформационных принципов к таким данным, полученным в процессе аналитических и синтетических исследований, оказывает помощь при решении вопроса о выборе той или иной конфигурации. В последующих разделах настоящей главы кратко излагаются некоторые более специализированные аспекты рассматриваемого вопроса. [c.99]

    Вторым методом определения конфигурации в случае геометрической изомерии этиленов, как и при оптической изомерии или геометрической изомерии циклических соединений, является химическая корреляция. Согласно этому методу, соединение неизвестной конфигурации химически связывают с соединением, конфигурация которого известна. Как и в случае циклических соединений (гл. 7), следует остерегаться изменения конфигурации в процессе необходимых химических превращений. Всегда лучше проводить корреляцию с обоими конфигурационными изомерами неизвестного строения, чтобы быть уверенным, что они коррелируются с различными изомерами известного строения. [c.314]

    В разделе о стереоизомерии молочных кислот упоминалось, что до недавнего времени наука не могла подойти к определению абсолютной конфигурации антиподов. Если в случае геометрической изомерии вопрос, какое вещество является цис- и какое трв с-изомером, можно было решить как химическими, так и физическими методами (стр. 193), то в случае зеркальной изомерии эти и другие методы казались бессильными. В молекулах антиподов расстояния между любой парой атомов или групп атомов совершенно одинаковы. Этим обусловлены одинаковые дипольные моменты соответствующих связей О- и 1-форм, одинаковые результирующие дипольные моменты, одинаковая реакционная способность. Наиболее эффективный для изучения геометрии молекул рентгеноструктурный метод при обычной методике его проведения также оказался бессильным. При рентгено- [c.215]


    С развитием более точных методов исследований стало ясно, что большинство органических соединений, включающих асимметрический атом углерода, не имеют идеализированной симметрии, описываемой геометрическими моделями, на которых основывалась их стереохимия. Более того, известно, что многие органические соединения являются нежесткими, и все больше и больше накапливается фактов, свидетельствующих о том, что внутренние движения играют важную роль в определении того, какие химические свойства будет иметь соединение. Усредненные по времени геометрии часто используются для построения жестких моделей, которые будут представлять стереохимию таких молекул, и иногда вполне успешно. Однако такой подход не может быть использован всегда например, усредненные конфигурации, имеющие смысл с геометрической или химической точки зрения, могут отсутствовать (как в случае бульвалена [1], когда внутренние движения изменяют [c.47]

    Несколько лет назад К. А. Йенсен впервые предпринял измерение ди-польпых моментов комплексных соединений платины с целью разработки нового метода определения конфигурации геометрически изомерных солей [21]. В качбстве объектов для измерения он избрал комплексные соединения двухвалентной платины с тиоэфирами и третичными фосфинами, так как эти соединения в противоположность аммиакатам и аминатам достаточно растворимы в бездипольных растворителях. При этом оп обнаружил, что производные тиоэфиров и третичных фосфинов, которые па основании способов получения и физических свойств (окраска, температура плавления) до самого последнего времени считались цис-соедине-ниями, на самом деле (но отсутствию дипольного момента) являются транс-соедипепиями, в то время как изомерные им соединения, считавшиеся транс-формами, обладают большими дипольными моментами и, следовательно, цис-структурой. Подобного рода открытие заставило Иенсена попытаться проверить правильность результатов определений конфигурации, произведенных химическими методами на примере аммиачных и амино- [c.330]

    Химические методы определения конфигурации цис- и транс-изомеров значительнопроще но, так как большинство химических реакций протекает при повышенной температуре, а геометрические изомеры склонны при этих условиях переходить из. одной формы в другую, применять химические методы надо с большой осторожностью. [c.510]

    Но после того как Тейлор [12] ввел в гетерогенный катализ обоснованное опытом понятие активного каталитического центра (АКЦ), создались предпосылки к синтезу представлений теории промежуточных соединений с конкретными данными о строении поверхности твердого тела. Первый шаг в этом направлении был сделан Баландиным [13] в мультиплетной теории, установившей связь между геометрическим строением катализируемой молекулы и геометрией расположения поверхностных атомов катализатора, и впервые поставившей вопрос о том, что активный центр должен иметь определенный числовой состав и определенную геометрическую конфигурацию (принцип геометрического соответствия). Позднее Кобозев [14] в теории активных ансамблей дал метод определения числового состава активного центра и его производительности на основании статистического анализа экспериментальных данных по адсорбционным катализаторам. По Кобозеву [15], числовой состав АКЦ определен числом разрывающихся и образующихся на нем связей в данном процессе. Этими концепциями вместо качественного тейлоровского описания в понятие АКЦ внесена химическая и физическая определенность, позволяющая (поскольку расширены и ко нкретизирОва-ны сведения о находящемся в поверхностном слое катализатора компоненте АПС—АКЦ) по-новому подойти к структуре и свойствам АПС, т. е. вернуться на новой основе к ряду положений теории промежуточных продуктов. [c.67]

    То, что К в предыдущем примере считается равным единице, следует из экспериментальных данных и интуитивных предпосылок, о которых упомянуто выше. Дальнейшие уточнения были бы возможны, если бы был найден метод определения отношения в числе Карловитца независимым способом. Нам кажется, что для этого потребуется определить относительную ширину зоны подогрева и зоны реакции в волне, характеризуемой отношением Ть — Т—Ти). Это позволило бы с более общих позиций подойти к теории расстояния гашения (в том числе для различных геометрических конфигураций, таких, как плоскопараллельные пластинки и цилиндрические трубки) и глубины проникновения при гашении одной поверхностью, измеряемых при помощи отношения SugF, где gp — критический градиент скорости при проскоке пламени [2]. Этот вопрос подробно рассмотрен в нашей книге Горение, пламя и взрывы в газах , 1951 г. Как нам кажется, из изложенного выше следует, что уточненная концепция растяжения пламени могла бы заменить идеальную, но очень сложную теорию, основанную на детальном описании переноса тепла и процессов химической кинетики. [c.598]

    Электронография. В основе метода лежит изучение диффракции электронов. Электронография как экспериментальный метод органической химии применяется главным образом для определения геометрического строения молекул. Таким путем удается непосредственно определить положение отдельных атомов, на основании чего можно рассчитать расстояния между химически связанными атомами, а также валентные углы, установить конфигурации определенных групп атомов, наименьшие расстояния между химически не связанными атомами и различные другие структурные параметры. Вследствие малой проникающей споссбности электронного пучка в твердом веществе электронографические исследования пpJBoдят я большей частью в газовой фазе, однако, имеется ряд работ по диффракции электронов в тонких пленках органических высокомолекулярных веществ, имеющих аморфное или кристаллическое строение. [c.25]

    Промышленные катализаторы всегда имеют развитую внутреннюю поверхность. Если бы это не было так, то внешняя поверхность, весьма небольшая, быстро подвергалась бы отравлению и катализатор вскоре утрачивал бы активность. Для того чтобы иметь возмоншость точно предсказать размер пор. необходимый для достия ения определенной активности катализатора, нужно создать модель пористой структуры этого катализатора. Промышленные катализаторы обладают сложной структурой нор, и поэтому, чтобы решать общую проблему определения скорости реакций и селективности реакции в порах катализатора, необходимо на основании результатов определения объема пор и величины поверхности физическими методами выбрать подходящую модель. Правильность выбора модели определяется тем, насколько хорошо экспериментальные данные но адсорбции можно связать с общей геометрической конфигурацией пористой структуры таким выражением, которое позволяет достаточно точно оценить величину поверхности и объем нор. После того как подходящая модель, характеризующая пористое вещество, выбрана, можно рассмотреть вопрос о том, как влияет диффузия в норах на кинетику химических реакций, и можно более точно определить возможность какого-либо улучшения активности или селективности катализатора в результате правильного выбора размера его таблеток или величины пор. На основании результатов определения размера пор можно сделать также и другие полезные выводы. Например, вопрос о том, будет ли водяной пар снижать активность катализатора крекинга, можно выяснить исходя из тех соображений, что если дезактивация водяным наром преобладает, то уменьшение величины поверхности катализатора сопровождается значительным увеличением радиуса нор. [c.161]

    НОВНОМ получается вещество I, которое могкно освободить от незначительных нримесей изомера II непродолжительной обработкой конц. HjSOj (хроматографический контроль свидетельствует о наличии только вещества I, рис. 1, В). Изомер П получен в чистом виде (хроматографический контроль на пластинке, рис. 1, Г) нри УФ-облучении раствора I в четыреххлористом углероде с последующей перекристаллизацией из того же растворителя. Отнесение отих изомеров к определенной геометрической конфигурации было осуществлено нами на основе метода химических корреляций, ИК- и ЯМР-спектров, а также измерений дипольных моментов. [c.203]


Смотреть страницы где упоминается термин Конфигурации геометрической определение химические методы: [c.108]    [c.108]    [c.36]   
Современная химия координационных соединений (1963) -- [ c.187 ]




ПОИСК





Смотрите так же термины и статьи:

Конфигурация определение



© 2025 chem21.info Реклама на сайте