Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Волокна плавление

    Полимеризация протекает в присутствии катализаторов. В зависимости от условий полимеризации получают полипропилен, различающийся по структуре макромолекул, а следовательно, и па свойствам. По внешнему виду это каучукоподобная масса, более или менее твердая и упругая. Отличается от полиэтилена более высокой температурой плавления. Например, полипропилен с молекулярной массой выше 80 000 плавится прн 174—175 °С. Используют полипропилен для электроизоляции, для изготовления защитных пленок, труб, шлангов, шестерен, деталей приборов, а также высокопрочного и химически стойкого волокна. Последнее прим е-няют в производстве канатов, рыболовных сетей и др. Пленки нз полипропилена значительно прозрачнее и прочнее полиэтиленовых, пищевые продукты в упаковке из полипропилена можно подвергать стерилизации, варке и разогреванию. [c.501]


    Из данных таблицы 104 следует, что наилучшим комплексом физико-механических свойств обладают полипропиленовые волокна. Полипропиленовые волокна имеют более высокую температуру плавления, чем полиэтиленовые, не уступая последним, волокнам по другим свойствам. [c.344]

    Лавсан, известный также под названием терилен и дакрон, обладает высокой прочностью, и его температура плавления (255° С) наиболее высокая по сравнению с описанными выше полимерами, идущими на изготовление синтетического волокна. Получаемые из лавсана волокна обладают высокими качествами. Будучи весьма прочными, они являются основой для изготовления различных тканей и вязаных изделий. По внешнему виду эти изделия похожи на шерстяные, они не выгорают на солнце, не линяют и так же, как и другие полимеры, не портятся молью. [c.351]

    Нитроновое волокно по своей прочности уступает нейлону, капрону и лавсану, но оно превосходит их по химической стойкости. Температура плавления нитрона также высокая и составляет 250° С. Нитроновое волокно очень похоже на шерсть и служит великолепным материалом для изготовления тепловых пушистых свитеров и кофточек, различных обивочных тканей, занавесей и т. п. Ткани из нитронового волокна очень легко стираются. Как и лавсан, нитрон не выгорает на солнце и не портится молью. [c.351]

    В других исследованиях по улавливанию летучей золы при температурах до 980 °С использовали волокно кремнекислого алюминия с температурой плавления 1750°С [422]. Эффективность улавливания достигала 90%. Более тонкие волокна при высокой плотности набивки обеспечивали повыщение эффективности улавливания. Скорость газов составила от 750 до 3500 мм/с, причем повышение скорости газов способствовало снижению эффективности улавливания, что позволило предположить унос уже уловленных частиц при высоких скоростях газов. [c.373]

    Полипропилен имеет температуру плавления 170°, вместо. 125° для полиэтилена, и получаемые из него волокна более прочны. Это определяет его дальнейшее применение. [c.591]

    На рис. 8.20 также видно расширение головки одиночного волокна. Это расширение соответствует сокращению ориентированного материала, вызванного нагревом волокна в процессе пластического деформирования. Если скорость деформирования возрастает до 50 с-, то тепло, выделяющееся при пластическом деформировании не затронутого трещиной поперечного сечения волокна, не может рассеиваться достаточно быстро. Происходит локальное превышение температуры плавления, и головка волокна расширяется почти до диаметра невытянутого материала (рис. 8.21). [c.264]


    Волокна, используемые в качестве армирующих наполнителей, должны иметь следующие свойства высокую температуру плавления, малую плотность, высокую прочность во всем интервале рабочих температур, отсутствие токсичности при изготовлении и эксплуатации. [c.69]

    Сушка твердых веществ может проводиться на воздухе при комнатной температуре и при нагревании в сушильном шкафу. При комнатной температуре твердые вещества чаще всего сушат на необожженных пористых фарфоровых и глиняных тарелках или на фильтровальной бумаге. В сушильном шкафу сушка твердых веществ производится на часовых стеклах, фарфоровых противнях, в фарфоровых чашках или бюксах. При этом температура в сушильном шкафу должна быть значительно ниже температуры плавления вещества, подвергаемого сушке. Категорически запрещается сушить в сушильном шкафу на бумаге, так как при этом продукт загрязняется бумажными волокнами, хлопьями подгоревшей и истлевшей бумаги и, кроме того, возможны значительные потери продукта, если в процессе сушки он пропитывает бумагу. Скорость сушки тем больше, чем выше температура. Многие органические соединения при высокой температуре разлагаются и подвергаются окислению кислородом воздуха. Такие соединения сушат при разрежении в лабораторных вакуум-сушильных шкафах. [c.41]

    Практически вытяжкой повысить прочность волокон на разрыв сверх 9,81-10 Па (100 кгс/мм ) не представляется возможным. Поэтому предлагались различные обходные пути наиболее эффективен использованный Савицким и Левиным [см. 16, с. 484], при котором закристаллизованное волокно подвергается кратковременному очень сильному обогреву (при температуре, существенно превышающей температуру плавления) с одновременной сильной вытяжкой. Вытяжке в этом случае, по существу, подвергается уже расплав удается получить, по крайней мере частично, кристаллиты с развернутыми цепями типа игольчатых кристаллов или усов (ср. стр. 227) как показывают опыты и ориентировочные расчеты, 10% таких кристаллитов по отношению к общему объему кристаллической фазы оказывается достаточно для получения прочности, превосходящей 20-10 Па. [c.217]

    Полимерные волокна отличаются тем, что исходные полимеры в них находятся в ориентированном состоянии в результате сильной вытяжки. Большинство волокнообразующих полимеров находится в кристаллическом состоянии и характеризуется сильными межмолекулярными взаимодействиями. Температуры плавления этих полимеров 100—300° С. Природные и синтетические волокна являются основой для создания текстильных материалов и изделий. [c.11]

    Кристаллические полимеры могут быть как в неориентированном, так и в ориентированном состоянии. К неориентированным кристаллическим полимерам относятся, например, полиолефины ПЭ и ПП. Для имеющихся в них сферолитов характерны складчатые кристаллиты. При этом сферолиты состоят из отдельных лучей, перпендикулярно которым располагаются складки из макромолекул. Модель такого полимера представляет собой сочетание кристаллической и некристаллической частей, а также областей перехода между ними. Например, у полиэтилена обычно бывает до 10—15% аморфной фазы. После плавления кристаллитов в таком полимере остаются упорядоченные области, играющие роль наполнителя. Таким образом, частично-кристаллический полимер напоминает систему из некристаллического полимера с наполнителем , между которыми имеются переходные слои. Ориентированными кристаллическими полимерами являются полимерные волокна. Для ориентированных полимеров разной степени кристалличности характерно наличие микрофибрилл. [c.23]

    Полимеры, образующиеся в условиях типичных для их получения, содержат в молекуле от 80 до 100 повторяющихся структурных единиц. Эти материалы 1те разлагаются при плавлении. При формовании волокна расплав полимера продавливают сквозь тончайшие отверстия после охлаждения он образует прочные нити. При растяжении этих нитей длинные молекулы полимеров принимают более или менее параллельное расположение. Вытянутые нити наматывают на бобины. [c.434]

    Стереорегулярный полипропилен (стр. 454) — кристаллически полимер с очень высокими физико-механическими показателями и хорошими диэлектрическими свойствами. Температура плавления полипропилена значительно выше, чем у полиэтилена 164—170° С, а молекулярная масса 60000—200 000. Полипропилен кислото-и маслостоек даже при повышенных температурах. При обычной температуре он не растворяется ни в одном растворителе, при 80° С растворяется в ароматических углеводородах и хлорированных парафинах. Благодаря исключительным свойствам полипропилен — весьма перспективный полимер. Имеются указания о том, что синтетическое волокно из полипропилена по прочности превосходит все известные природные и синтетические волокна. [c.469]

    Закономерности вязкого течения должны учитываться в процессах технической переработки полимеров в пластмассы, волокна и пленки, так как они связаны с предварительным переводом полимеров в вязкотекучее состояние. И здесь первостепенная задача — расширить температурный интервал текучести (область между плавлением и термическим разложением — Гр) за счет повышения температуры разложения. [c.398]


    Полиолефиновые (полипропиленовые и полиэтиленовые) волокна. Такие волокна очень перспективны вследствие доступности и дешевизны исходного сырья. Обладают высокой химической стойкостью, влагостойкостью, устойчивостью к гнилостным бактериям. Недостатком их является низкая температура плавления. Ткани из полипропилена и полиэтилена могут применяться для изготовления изделий технического назначения (рыбе- [c.420]

    Формование волокна из полиэфира аналогично формованию полиамидного волокна. Полиэтилентерефталат, применяемый для формования волокна, имеет молекулярный вес 15 ООО—-20 ООО и температуру плавления 250—265 С. [c.207]

    Технологическая схема процесса производства минеральной ваты представлена на рнс. 11.2. Шихту, состоящую нз раздробленных горных пород осадочного или вулканического происхождения, например диабаза, а также известняк и кокс, сплавляют в вагранке при температуре приблизительно 1500 С. Повышение содержания диоксида кремния приводит к получению более длинного расплава. Однако этот эффект сопровождается повышением температур плавления и прядения, что накладывает ограничение иа содержание ЗЮг в расплаве [8]. Из вагранки волокнообразующую композицию подают на четыре прядильных валка (3000— 5000 об/мин) и с помощью центробежной сплы получают тонкие волокна диаметром 3—7 мкм. Затем в продувочной камере волокна орошают связующим (фенольная смола) и маслом (около 0,2%) [c.169]

    Пластические массы и волокна эксплуатируются в твердом состоянии— кристаллическом или стеклообразном (аморфном). Выше температур плавления стеклования они размягчаются. Поэтому температуры их плавления или стеклования определяют верхний температурный предел эксплуатационных свойств, их теплостойкость. [c.151]

    Если получение капролактама ио методу СНИА вискоза пе вызывает никаких сомнений с правовой точки зрения, то дальнейшие операции по изготовлению волокна (плавление, прядение, вытягивание и т. д.) приходится осуществлять с большой осторожностью, чтобы не нарушить патентные права компаний Тоё рэ110н и Е. И. Дюпон до Немур , а также Нихои рэйон и Инвента . [c.284]

    Кристаллические стереорегулярпые полимеры имеют более высокую температуру плавления и меньшую ползучесть, чем кристаллические атактические полимеры, а механическая прочность их много выше. На основе стереорегулярных полимеров получены высокопрочные теплостойкие волокна и пленки. [c.59]

    Гетерополитиоэфиры, в отличие от карбополитиоэфиров, имеют более низкую степень полимеризации, но отличаются высокой кристалличностью. Поэтому они образуют прочные пленки и волокна, аналогично кислородсодержащим полиэфирам. Прочность и эластичность этих изделий возрастает с повышением степени ориентации полимеров. Гетеротиополиэфиры отличаются от кислородсодержащих аналогов полиэфиров более высокой температурой плавления и большей стойкостью к гидролитическому воздействию. [c.464]

    Если эти ответвления расположены редко, пе создается пятствий для кристаллизации отдельных сегментов макромолекул, и кристаллические образования имеют такие же размеры и форму, как и в гомополимерах полиамида. Поэтому температура плавления привитого сополимера мало отличается от температуры плавления соответствующего гомополиамида. Полиоксиэтиленовые боков1.1е ответвления выполняют функцию пластификатора, способствуя увеличению текучести расплава, повышению упругости полимера, придавая волокну большую гибкость и лучшую морозостойкость. Волокна и пленки из привитого полиамида сохраняют упругость и при —7Сг (полиамид 6 и полиамид 6-6 начинают утрачивать упругость при температуре н(i кoJ[ькo ниже О ). [c.543]

    Вследствие сложности своей структуры высокополимерные соединения не имеют твердо выраженной точки плавления, В осиой-ном переход от твердого кристаллического состояния в жидкое происходит у них постепенно. Вместе с тем имеется возможность. выделить некэторые промежуточные состояния. Одним из них является пластическое состояние. Это состояние свойственно полимерам особой молекулярной структуры и формы, а поэтому подробному его рассмотрению здесь не будет уделено место. В то же время все волокна обладают в известной степени способностью к нахождению в пластическом состоянии. Иными словами, все волокна представляют собой термопластические полимеры. Нетермопластические полимеры (обычно именуемые термореактивными), как-то мочевиио-формальдегид, фенолоформальдегид и т. д., не образуют вследствие их хрупкости удовлетворительных волокон, что объясняется чрезвычайно высокой степенью их кристалличности. [c.222]

    Большой интерес, проявляемый промышленностью к таким изделиям, послужил причиной интенсивных исследований морфологических изменений, происходящих в волокне в процессе холодной вытяжки [42]. Результаты этих исследований показали, что образование шейки не связано с локальными повышениями температуры, которые вызывали бы плавление кристаллитов и приводили к течению полимера, сопровождающемуся изменениями структуры. Более того, даже допущение об общем размягчении растягиваемого образца не позволяет объяснить механизм шейкообразования. Оказывается, образование шейки является результатом разрушения кристаллитов поликристаллических композитов, инициированного напряжениями. Молекулярную модель морфологических изменений, происходящих при холодной вытяжке (образовании шейки), можно описать следующим образом (рис. 3.16) [7]. [c.65]

    Шестеренчатые насосы (см. рис. 10.32, в) широко применяют для перекачивания различных жидкостей. Использование течения, вызванного уменьшением объема нагнетательной камеры, позволяет точно дозировать расход шестеренчатых насосов при сохранении высокого давления на выходе — сочетание, необходимое при перекачивании низковязких масел. Гидравлические системы многих машин для литья под давлением включают в себя шестеренчатые насосы, хотя имеется тенденция замены их лопастными насосами. Шестеренчатые насосы также нашли свое применение при перекачивании и нагнетании полимерных расплавов, в частности низковязких. Поэтому их часто используют как бустерные насосы в сочетании с пластицирующим червячным экструдером для низковязких полимеров (например, полиамида) как для поддержания давления, так и для точного регулирования расхода (например, при изготовлении прядильного волокна). Шестеренчатые насосы как устройства с высокой производительностью применяются при грануляции полиолефинов, поступающих непосредственно из реактора. Комбинация из трех последовательно соединенных шестеренчатых насосов при питании их твердыми гранулами была предложена Паскуэтти [31] для плавления и перекачивания расплава. [c.353]

    Так как образование циклов и окислительная дегидр0г низация экзотермичны, поддержание заданных температур этих реакций целесообразно путем теплопередачи не от внешнего источника нагрева, а предварительно подогретым примерно до 200 С воздухом. При этом предотвращается перегрев волокна выше 250 С до окончания его стабилизации, что препятствует его плавлению и возгоранию выше 300 С. [c.582]

    Образование КВЦ сопряжено с выделением теплоты кристаллизации и система возвращается из состояния, соответствующего верхней линии для кристаллической фазы в состояние, соответствующее нижней впрочем, для гйбкоцепных полимеров фазовая линия КВЦ на О — Г-диаграмме может и не вполне совпадать с линией для складчатых кристаллов. Важно, однако, что такое волокно (или пленка) с КВЦ вполне устойчиво и обладает такими же прочностными показателями, что и жесткоцепные аналоги, уступая им только по температуре плавления, которая имеет обычные [c.219]

    Полимеризация протекает в присутствии катализаторов (R3AI + Т1С1з) в растворителе. В зависимости от условий полимеризации получают полипропилен, различающийся по структуре макромолекул, а следовательно, и по свойствам. По внешнему виду это каучукоподобная масса, более или менее твердая и упругая. Отличс1ется от полиэтилена более высокой температурой плавления и более высокой прочностью на растяжение. Например, полипропилен с молекулярной массой выше 80000 размягчается при 174—175 °С. Его теплостойкость, стойкость к истиранию и поверхностная прочность значительно выше, чем у полиэтилена. Используют полипропилен для электроизоляции, для изготовления защитных пленок, труб, шлангов, шестерен, деталей приборов, а также высокопрочного и химически стойкого волокна. Последнее применяют в производстве канатов, рыболовных сетей и др. Пленки из полипропилена значительно прозрачнее и прочнее полиэтиленовых, пищевые продукты в упаковке из полипропилена можно подвергать стерилизации, варке и разогреванию. [c.605]

    С. к. поступает в продажу в виде щелока (610—650 г/л) или безводная плавленая (куски, чешуйки или горошинки), содержащая 92—98% NaOH. С. к. применяется в производстве мыла, искусственного волокна, алюминия, красок, для отделки и мерсеризации тканей, очистки нефти, в бумажной и целлюлозной промышленности в органическом синтезе и др. [c.231]

    Фенол (карболовая кислота) СвНьОН. Бесцветное кристаллическое вещество со специфическим запахом. Температура плавления 42,3° С, температура кипения 181,1° С. Довольно трудно растворяется в воде. На воздухе краснеет (окисляется) и кристаллы его расплываются. Применяется в огромных количествах для производства синтетических феноло-формальдегидных смол, красителей, синтетического волокна (капрона и анида, стр. 298, 299, 479, 480) для синтеза лекарственных веществ. Сильный антисептик. Вызывает ожоги кожи ядовит. [c.366]

    Температура плавления политетраметилентерефталамида 436 °С, полиэтилентерефталамида 455°С. Полимеры растворимы в серной и трифторуксусной кислотах. Из растворов полиалкилентерефталамидов в трифторуксусной кислоте можно формовать волокно. Использование для синтеза Ы-замещенных диаминов приводит к получению полиамидов с более высокой температурой плавления. [c.386]

    Поликонденсация в растворе (в пиридине) протекает с большей скоростью, чем поликондеисация соли в твердой фазе. Полифенилеп-сульфид плавится при температуре около 295 С, стоек до 400°С па воздухе. Его применение при высоких температурах лимитируется температурой плавления, поэтому из него сначала формуют изделия (пленки, волокна), а затем прогревают их в атмосфере азота при 400 В результате образования межмолекулярных сульфидных связей образуется неплавкий нерастворимый термостойкий полимер пространственного строения. Полифениленсульфиды обладают исключительно высокой адгезией к стеклу. [c.401]

    Формование полиамидного волокна производится из расплава. Из герметически закрываемого бункера-питателя полимер в виде крошки поступает на плавильную решетку. Плавление происходит в токе азота во избежание разложения полиамида. Расплавленная масса продавливается через фильеру. Выходящие и фильеры струйки расплавленной массы поступают о шахту пря-днльнои. машины, где охлал<даюрся током воздуха и застывают. Диаметр [c.206]

    Из полиэфиров ценными техническими свойствами обладает нолиэти-ленторефталат, высокие механические свойства которого обусловлены теми же причинами, что и полиамидов. Полиэфиры алифатических дикарбоновых кислот не обладают такими свойствами. В частности, низкая температура их плавления (ниже 100°) препятствует использованию их в качестве волокнообразующих материалов. В отличие от них полиэтилентерефталат обладает высокой кристалличностью, высокой температурой плавления (265°) и образует прочные волокна, что объясняется большей жесткостью цепи благодаря наличию симметричных п, и -фениленовых группировок и полярностью эфирных групп [75]. [c.671]

    Стереорегулярный полипропилен представляет особый интерес в производстве синтетического волокна [72]. Стоимость пропилена в 5 раз ниже стоимости полистирола и в 9 раз ниже стоимости полиамидного и полиэфирного волокон. В то же время удельная прочность волокон из полипропилена выше удельной прочности найлона (табл. ХП.И). Плотность полипропилена очень низка, следовательно, ткани из него отличаются особенной легкостью к тому же они абсолютно влагостойки, имеют высокие электроизоляционные качества, стойки к действию растворов кислот и ш елочей. Недостаток полипропиленовой ткани заключается в сравнительно низкой температуре ее плавления. [c.790]

    Твердость по Мосу Прочность при растяжении, Н/мм2 Модуль упругости, Н/мм Температура плавления, °С Плотность, кг/м pH (в воде без СО2) Диаметр волокна, мкм [c.151]

    В колбу 4 помещают около 250 г очищенной серы, собирают установку, как показано на схеме (см. рис. 64), пропускают из баллона ток высушенного азота (высушивание плавленым хлоридом кальция, или едким кали и пятиокисью фосфора) для вытеснения воздуха из установки обычно пропускают 7—10-кратный объем азота ло отношению к объему установки. Затем п )опускают приблизительно такой же объем водорода для вытеснения азота и, не ярегсращая пропускание водорода, нагревают трубку 5 до 600 °С. Как только е трубке будет достигнута эта температура, нагревают колбу 4 с серой приблизительно до 250°С, для чего колбу помещают на песчаную баню. Одновременно конденсатор 16 охлаждают жидким воздухом. Скорость потока водорода должна составлять 8—9 л ч. Для того чтобы предотвратить оседание серы на холодной части отводной трубки колбы 4 и забивку трубки, последнюю изолируют асбестовым волокном. Температуру и-образных трубок 12, 13, 14. 15 поддерживают соответственно около —20 —40 —55 —55 °С для охлаждения трубок ишоль-зуют смесь твердой углекислоты и ацетона. [c.153]

    Иногда полимер имеет очень высокую вязкость расплава или он несколько нестабнлен при температуре плавления. В таком с 1учяе часто смешивают полимер с пластификатором — высококнпяш,ен жидкостью, совместимой с полимером. Пластифицированный полимер плавится при более низкой температуре. Таким образом в промышленности получают волокно из ря а вииило-в Х полимеров (например, волокно саран ). [c.35]

    Если полимер нельзя расплавлять или он нестабнлен выше температуры плавления, изделие получают нз его вязких растворов в летучем растворителе. Из таких растворов могут быть отлиты пленки или вытянуты волокна и нитн. Массивные предметы (аналогичные штампованным образцам) нельзя получить из раствора, так как удаление растворителя становится очень трудным, а сохранение формы — почти невозможным. [c.36]


Смотреть страницы где упоминается термин Волокна плавление: [c.134]    [c.307]    [c.342]    [c.406]    [c.41]    [c.326]    [c.155]    [c.143]    [c.154]   
Кристаллизация полимеров (1966) -- [ c.184 , c.185 , c.188 , c.197 ]




ПОИСК







© 2024 chem21.info Реклама на сайте