Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиэтилен окислителями

    Полиэтилен (-СН2-СНг-)п — карбоцепной термопластичный кристаллический полимер белого цвета со степенью кристалличности при 20°С 0,5—0,9. При нагревании до температуры, близкой к температуре плавления он переходит в аморфное состояние. Макромолекулы полиэтилена (ПЭ) имеют линейное строение с небольшим количеством боковых ответвлений. ПЭ водостоек, не растворяется в органических растворителях, но при температуре выше 70°С набухает и растворяется в ароматических углеводородах и галогенпроизводных углеводородов. Стоек к действию концентрированных кислот и щелочей, однако разрушается при воздействии сильных окислителей. Обладает низкой газо- и паропроницаемостью. Звенья ПЭ неполярны, поэтому он обладает высокими диэлектрическими свойствами и является высокочастотным диэлектриком. Практически безвреден. Может эксплуатироваться при температурах от -70 до 4-бО°С. [c.388]


    Применение для получения анилина, бензидина, некоторых красителей для очистки смазочных масел в качестве отдушки для дешевых сортов мыла, мягкого окислителя в некоторых органических синтезах (фуксина, хинальдина и других), растворителя полиэтилен-терефталата и растворителя в реактиве Уайта, который используется для обнаружения свободного оксида кальция в цементе. [c.83]

    Если макромолекула П. состоит из 50—70 молекул этилена, связанных в одну цепочку, то полимер представляет собой жидкость, которая используется как смазочное масло если макромолекула состоит из 100—120 молекул этилена, то полимер — твердое белое вещество если же макромолекула состоит из 1000 и более молекул этилена, получается твердая полупрозрачная, эластичная и прочная пластмасса, га-зываемая полиэтиленом (или полит е-ном). П. стоек при обычных условиях к действию щелочей, кислот и окислителей. Морозостоек, теплостоек, обладает сопротивлением на разрыв, горит бледно-голубым пламенем. П. широко используется в качестве электроизоляционного материала для производства водопроводных труб, предметов домашнего обихода, посуды для хранения и перевозки щелочей и кислот, как упаковочный материал для продуктов питания и др. [c.199]

    Полиэтилен [—СНз—СН2— — термопласт, получаемый методом радикальной полимеризации при температуре до 320 °С и давлении 120—320 МПа (полиэтилен высокого давления) или при давлении до 5 МПа с использованием комплексных катализаторов (полиэтилен низкого давления). Полиэтилен низкого давления имеет более высокие прочность, плотность, эластичность и температуру размягчения, чем полиэтилен высокого давления. Полиэтилен характеризуется устойчивостью к агрессивным средам (кроме окислителей), влагонепроницаем, набухает в углеводородах и их галогенопроизводных. Хороший диэлектрик (см. табл. Х1П.1), может эксплуатироваться в пределах температур от —20 до - -100°С. Облучением можно повысить теплостойкость полимера. Из полиэтилена изготавливают трубы, электротехнические изделия, детали радиоаппаратуры, изоляционные пленки и оболочки кабелей (высокочастотных, телефонных, силовых).  [c.365]

    Политетрафторэтилен можно рассматривать как полиэтилен, в молекуле которого все атомы водорода заменены атомами фтора. Энергия связи между углеродом и фтором велика и составляет 519 кдж/моль. Этим и объясняется весьма высокая термостойкость полимера, а также стойкость к действию окислителей и других химических реагентов. В этом отношении он превосходит даже платину и золото. Негорюч, обладает высокими диэлектрическими свойствами. Находит применение в химическом машиностроении и электротехнике. [c.471]


    Свойства полиэтилена зависят от способа и условий его получения и от молекулярной массы полимера. Так, полимеры с относительной молекулярной массой от 1000 до 10 000 представляют собой жидкости, масла и воски. Эти полимеры имеют ограниченное применение. В настоящее время главным образом получают полиэтилен с относительной молекулярной массой около 50 000 и выше. Такой полиэтилен представляет собой твердое белое вещество, тонкие пленки его почти прозрачны. Полиэтилен практически не растворяется в воде и других растворителях (при комнатной температуре). Обладает высокой химической стойкостью разрушается лишь под действием сильных окислителей. Важное свойство полиэтилена — термо пластичность в нагретом состоянии он размягчается, при этом очень легко можно изменять его форму при охлаждении он застывает и сохраняет эту форму. [c.325]

    Полиэтилен — один из самых распространенных и освоенных промышленностью полимеров, характеризуется высокой стойкостью к воздействию воды и агрессивных сред при температуре до 60 °С. Обладает высокой стойкостью к кислотам, щелочам, многим окислителям и растворителям. Практически не действуют на полиэтилен жиры, масла, керосин и другие нефтяные углеводороды. Фосфорная, соляная и фтористоводородная кислоты в любых концентрациях не оказывают на полиэтилен заметного действия. Однако серная и азотная кислоты при температурах выше 60 °С быстро его разрушают. [c.122]

    Полиэтилен получают высокого давления (ВД), низкого давления (НД) и среднего давления (СД). Температура размягчения полиэтилена ВД 100—11б°С, НД 125— 135°С. Полиэтилен НД обладает высокой химической стойкостью (табл. 6-18) к кислотам, щелочам, многим окислителям и растворителям и имеет повышенную прочность. [c.337]

    Наиболее высокой химической стойкостью обладает фторопласт-3, который в обычных условиях не разрушается при действии кислот, щелочей и окислителей. Полиэтилен, полипропилен и полистирол устойчивы к действию кислот, щелочей, но разрушаются под влиянием окислителей—кислорода воздуха, озона, перекисей, азотной кислоты и т. д. Под влиянием кислорода воздуха изделия из полиэтилена и полипропилена (особенно тонкостенные) со временем становятся более твердыми, жесткими и хрупкими. Изделия из полистирола и полиамидов постепенно желтеют и приобретают хрупкость. Пластикаты разрушаются в растворах щелочей. Полиамиды нестойки к действию кислот и кислорода воздуха при повышенной температуре. Этролы разрушаются в растворах кислот и щелочей. Под влиянием атмосферных воздействий из пластиката и этролов постепенно удаляется часть пластификатора и полимеры становятся менее эластичными. [c.541]

    Подобные вещества могут образовать зону, показатели механических свойств в которой оказываются низкими в результате резко ухудшается адгезионная прочность. Поэтому удаление подобных слабых слоев — один из эффективных способов повышения адгезионной прочности [148]. Следует упомянуть о таких операциях, как удаление замасливателей с поверхности стеклянного волокна при производстве стеклопластиков и очистка поверхности металлов перед склеиванием и нанесением покрытий. В этой связи напомним также о влиянии авиважных препаратов на прочность связи в резинотканевых системах. Считают, что повышение адгезии к полиэтилену после обработки его поверхности пламенем, коронным разрядом или окислителями обусловлено не только появлением на поверхности активных функциональных групп, но и удалением различных загрязнений, создающих ослабленную зону [110, 132, 148]. [c.370]

    Эффективным и простым методом обработки полиэтилена является воздействие на него озоном, некоторыми кислотами и окислителями. Показано, что из минеральных кислот и окислителей (олеум, хромовая смесь, гипохлорит натрия, перекись водорода) наиболее сильно действует олеум, содержащий 40— 60% ЗОз, и хромовые смеси различного состава [36]. После обработки полиэтилен хорошо смачивается водой и другими полярными жидкостями и прочно склеивается полярными клеями. Измерение сопротивления сдвигу клеевых соединений полиэтилена и дуралюмина [15, 36], полученных с применением клея ПУ-2 (на основе полиуретана), показывает, что прочность связи резко возрастает  [c.372]

    Эффективна обработка поверхности полиэтилена и других инертных полиолефинов окислителями. Б частности, так удалось повысить адгезию полиэтилена к металлу [41, 42]. Адгезионная прочность в системе полиэтилен — целлофан может быть существенно повышена в результате интенсивной тепловой обработки полиэтиленовой пленки [43, 44] (рис. XI.4). При температуре экструзии (220—250 °С и выше) наблюдается резкое возрастание адгезионной прочности. Механизм взаимодействия на границе раздела адгезив — субстрат в этом случае обусловлен, очевидно, образованием водородных связей между гидроксильными группами целлофана и кислородсодержащими группами окисленного полиэтилена. [c.373]


    Полиэтилен и сополимер этилена с небольшим количеством других олефинов обладают рядом ценных свойств. Неорганические кислоты и едкие щелочи не действуют на полиэтилен лишь при длительном воздействии окислителей и концентрированных кислот полиэтилен начинает разрушаться. [c.127]

    После тщательных исследований [15] предложена унифицированная методика, по которой проанализировано свыше 150 разнообразных фторорганических соединений. Наилучшим окислителем признан КНОз [15, 25], насыщенным раствором которого смачивается бумага, служащая для завертывания навески наилучший горючий материал — полиэтилен, который является контейнером для навески (пленка, ампулы, стаканчики). При анализе жидкостей с высокой температурой кипения (112° С) в контейнер с навеской необходимо поместить еще кусочек поролона (методика № 5). [c.21]

    На изделия из вискозы, эфиров целлюлозы, полипропилена, полиамидов, поливинилхлорида, полиэтилентерефталата, поликарбоната и полистирола печать м. б. нанесена без затруднений. Печать на полиэтилене и политетрафторэтилене невозможна без специальной обработки (активации) их поверхности. Так, полиэтилен обрабатывают перманганатом или др. сильным окислителем. Однако после такой обработки полимер не может быть использован для упаковки пищевых продуктов из-за токсичности адсорбированных в-в. Поэтому предпочитают обработку полиэтилена открытым пламенем или в электрич. поле. В последнем случае пленку помещают между двумя электродами, подключенными к генератору переменного тока высокого напряжения. В результате разрядов между электродами происходит ионизация воздуха с образованием атомарного кислорода и озона. При их воздействии на поверхность полиэтиленовой пленки образуются перекисные и гидроперекисные группы, после чего пленка становится восприимчивой к полиграфич. краскам. [c.295]

    Эти методы основаны на использовании различных окислителей (органических перекисей или гидроперекисей). Для этой цели теперь широко применяют также ионизирующие излучения [28, ПО, ИЗ 422, 463—478]. В результате такой вулканизации сильно повышается термостойкость и механическая прочность полимера. Так, обычный полиэтилен плавится при 105°, а вулканизированный при помощи радиации размягчается при температуре выше 200° [476—478, 479—481]. Полиэтилен становится после облучения нерастворимым в органических растворителях, утрачивает резкую температуру плавления и превращается в прозрачный эластичный материал [479]. [c.72]

    Пластмассы обладают высокой стойкостью к большинству электролитов (за исключением сильных окислителей и концентрированной серной кислоты). Во многих случаях они оказываются хорошими заменителями металлов. Из многочисленных пластических масс в химическом машиностроении наиболее широкое применение находят фаолит, винипласт, полиэтилен, фторопласт-4. [c.132]

    Винипласт, полиэтилен, полипропилен хорошо противостоят воздействию многих корродирующих сред, за исключением сильных окислителей и концентрированной серной кислоты. Из них изготовляют небольшие аппараты, трубопроводы, воздуховоды, отдельные детали аппаратов. [c.132]

    Чтобы проиллюстрировать низкую реакционную способность алканов, укажем только один пример к-гексан не взаимодействует с кипящей HNO3, концентрированной HjSO , таким сильным окислителем, как КМпОд., и с расплавленным NaOH. Инертность алканов позволяет использовать их в качестве смазочных масел, полимерных пленок и твердых пластмасс для изготовления труб и сосудов (хорошо известным всем примером является полиэтилен). В сущности, алканы вступают только в такие химические реакции, как горение, дегидрирование и галогенирование. [c.287]

    Полиэтилеи устойчив к действию кислот, щело чей, растворов солей и органических растворителей. Он разрушается только под действием сильных окислителей — концентрированных азотной и серной кислот п хромовой кислоты. При комнатной температуре полиэтилен нерастворим в известных растворителях, а при нагревании выше 70°С растворяется в толуоле, ксилоле, хлорированных углеводородах, декалине, тетралипе. Он устойчив к действию воды. Водопоглощение его за 30 суток при 20 °С не превышает 0,04%. Под влиянием кислорода воздуха, света и тепла полиэтилен теряет эластические свойства и пластичность, становится жестким и хрупким (происходит старение). Для замедления процесса старения в полиэтилен добавляют небольшие количества термостабилизаторов (ароматические амины, фенолы, сернистые соединения) и светостабилизаторов (сажа, графит). [c.10]

    Полиэтилен представляет собой предельный углеводород с молекулярной массой от 10 000 до 400 000. Это бесцветный полупрозрачный в тонких и белый в толстых слоях воскообразный, но твердый материал с температурой плавления 110—125°С и плотностью 0,93—0,97 г/см . Полиэтилен вполне устойчив к воде и не растворяется при обычной температуре в больщинстве растворителей вообще химически полиэтилен достаточно стоек и разрушается только под действием сильных окислителей. Однако с те еии-ем долгого времени полиэтилен под действием воздуха, света и теплоты стареет, становится жестким и хрупким. Для иредотвра-щения этого в полиэтилен в небольших количествах вводят добавки специальных стабилизаторов. [c.378]

    Каучукоподобный, эластичный белый продукт. Полимер со средней молекулярной массой (200 ООО уг. ед.) значительно превосходит полиэтилен и полипропилен по эластичности, морозостойкости и растворимости. Полиизобутилен более стоек к действию окислителей, чем полипропилен выдерживает действие азотной кислоты, перекиси водорода, озона, кислорода. Концентрированные HNOз и Н2504 разрушают полиизобутилен только при температуре выше 80°. [c.243]

    К гибридным топливам относятся системы, использующие жидкий окислитель и твердое гранулированное горючее. Простые горючие, такие как полиэтилен, инертны, но могут гореть на воздухе. При сравнительно больших размерах гранул они способны долго находиться в воде, не претерпевая существенных изменений. Композиты, содержащие свободный металл (например, алюминий или магний) или бор, представляют несколько большую опасность на воздухе и ие горят в воде. В морской воде металлические добавки корродируют, поэтому возможный срок экспозиции в таких условиях не превышает 5 лет. Гранулированное горючее, содержащее гидриды металлов, например UH, AIH3 или ВеНг, быстро горит на воздухе и интенсивно реагирует с водой с образованием водорода. Допустимый срок пребывания в воде даже в случае массивных гранул очень мал, вероятно, менее 1 нед. В качестве жидких окислителей в гибридных системах используются такие же компоненты, как и в бинарных жидких топливах. Свойства таких окислителей представлены в табл. 164. [c.498]

    Полиэтилен обладает хорошей морозостойкостью, во иевысокоД теплостойкостью. Устойчив к растворам кислот, щелочей н солей, но не устойчив к окислителям и воздействию ультрафиолетовых лучей, особенно при нагревании. Прн нормальной температуре набухает в большйнстве орх гмгнчв-ских растворителей. Имеет высокие диэлектрические свойства/негорюч. Легка поддается механической обработке, хорошо сваривается взотом при 220 С. I [c.344]

    Если каждая макромолекула П. состоит из 50—70 молекул этилена, связанных в одну цепочку, то полимер представляет собой жидкость, которую используют как смазочное масло если макромолекула состоит из 100—120 молекул этилена, то полимер представляет собой твердое белое вещество при связывании тысячи и более молекул этилена получается твердая полупрозрачная, эластичная и прочная пластическая масса с плотностью 0,92, называемая полиэтиленом (или поли-теном). П. морозостоек, проявляет пластичность при нагревании, обладает хорошим сопротивлением на разрыв. П. горит голубоватым, слабо светящимся пламенем, стоек при обычных условиях к действию щелочей, кислот и окислителей. Используют как электроизоляционный материал, для производства водопроводных труб, предметов домашнего обихода, посуды для хранения и перевозки щелочей и концентрированных кислот, как упаковочный материал для продуктов питания. Полиэфиры — высокомолекулярные соединения, получаемые поликонденсацией многоосновных кислот или их альдегидов с многоатомными спиртами. Известны природные (янтарь и др.) и искусственные П. Практическое применение получили глифталевые смолы, полиэтилентерефталат, полиэфирмалеинаты и полиэфирак-рилаты. [c.106]

    Хлор, оксиды азота и некоторые другие окислители существенно снижают качество резиновых и пластмассовых изделий, красителей. Оксиды азота и серы могут на солнечном свету разлагать любые полимерные материалы. Механизмы разрушения специфичны для каждого полимера и не-достатчно изучены. Известно, что полиэфиры гидролизируются, от поливинилхлорида отщепляется хлористый водород, полиэтилен и полипропилен разлагаются из-за связывания полимерных цепочек с серой или их разрыва оксидами азота, в полистироле вдобавок образуются нитросоединения. [c.81]

    Для химической обработки полиолефинов (полиэтилен, полипропилен) применяют газообразный хлор, хлористый сульфурил (SO2 I2), озон, перекись водорода, смесь азотной и соляной (3 1) кислот, хромовую смесь. Для приготовления хромовой смеси берут 50 г бихромата калия, 880 г концентрированной серной кислоты и 70 г воды. Обработку в такой смеси проводят в течение 1 —10 мин при 70—100°С, после чего изделие тщательно промывают водой. Обработка полиолефинов окислителями повышает смачиваемость их поверхности клеями за счет появления на ней гидроксильных, карбонильных и других полярных трупп. [c.51]

    E6Ta и окислителей полиэтилен tsepfleeT, становится хрупким, на его поверхности появляются трещины [905]. При хранении азотной кислоты и ее смесей с фтористоводородной кислотой в полиэтилене он приобретает способность повышенного растворения в кислых и щелочных растворах [1198]. Полиэтилен набухает и растворим при нагревании во многих органических растворителях, а для некоторых (диэтиловый эфир, ацетон) проницаем. Широкий температурный интервал размягчения (120—200° С) делает полиэтилен удобным для обработки и изготовления изделий сложной формы [122]. [c.334]

    Сожжение в закрытой колбе, наполненной кислородом [9—15]. Данный метод имеет преимущество перед другими благодаря своей простоте, отсутствию дорогостоящих установок и ошибок, связанных с коррозией аппаратуры. Метод пригоден для определения многих элементов в органических соединениях фосфора и мышьяка [16], селена [17], серы и галогенов [18—20]. Для определения фтора описано большое количество вариантов [9, 12, 14, 21—24], так как многие соединения, особенно высоко-фторированные, обладают повышенной термостойкостью и способностью взаимодействовать со стеклом некоторые соединения летучи. Все это требует специальных условий для проведения анализа, чтобы предотвратить потери фтора. Для повышения эффективности сожжения применяют различные окислители (КагОг, КСЮз, ЫН4МОз, КНОз), а для увеличения продолжительности горения вводят горючие вещества (сахарозу, глюкозу, парафин, полиэтилен). [c.21]

    Метод основан на сожжении вещества в кислороде в замкнутой системе в присутствии платины. Продукты сжигания поглощаются водой, щелочью или хлоридом кальция и определяются ториметрически. Сжигание высокофторированных соединений обеспечивается введением в зону сожжения окислителя (КМОз), горючего (полиэтилен) и кусочка полиуретанового пенопласта поролона . [c.25]

    Из всех искусственных материалов полиэтилен обладает наименьшей проницаемостью для паров воды Нг, О2, СОг проникают несравненно лучше. Очень незначительную проницаемость по отношению к Нг, Ог и СОг имеют пленки полиэфиров, пленки из трифторхлорэгилена или из найлона [205, 206]. Обработанный хлором и хлорсульфоновой кислотой полиэтилен — гипалон Нуpalon) применим до 150° и устойчив при действии таких окислителей, как озон [207]. [c.49]

    Исследования в США применения порошковых топлив [5 проводили главным образом с топливами, имеющими оба компонента в порошковой форме. В качестве горючего использовали алюминий, двойной декаборид алюминия, диборид бора и циркония, диборид титана, гидриды циркония, бериллия, алюминия и полиэтилен. В качестве окислителя применяли перхлорат аммония, гидроксильный перхлорат аммония, нитрат аммония и гексанитроэтан. Порошковые частицы имеют размеры от 2 до 2000 мкм. Их не нужно сортировать, как показала практика, так как использование крупных и мелких частиц обеспечивает большую плотность заполнения баков и уменьшение их габаритов. [c.228]

    Поверхность полиолефинов, не содержащих функциональных групп и имеющих гладкую малопористую поверхность, перед нанесением Л. п. подвергают химич. модификации, в результате к-рой макромолекулы присоединяют полярные группы. Наиболее распространенный способ модификации — обработка жидкими или газообразными окислителями. Изделия предварительно обезжиривают, выдерживают для набухания поверхностного слоя пластмассы п смеси ацетона с толуолом (1 1) и окисляют хромовой смесью (4 мин при 85 °С или 2 ч при 18—25 °С), хромовой к-той (полиэтилен — 10 мин при 70 °С, полипропилен — 5 мин. при 100 °С), смесью НС1 и HNO, (3 1), конц. HNOg, гипохлоритом натрия (30—90 °С), Н Ог и др. [c.13]


Смотреть страницы где упоминается термин Полиэтилен окислителями: [c.212]    [c.350]    [c.164]    [c.447]    [c.470]    [c.44]    [c.365]    [c.147]    [c.447]    [c.113]    [c.285]    [c.84]    [c.297]    [c.313]    [c.334]    [c.248]   
Химические реакции полимеров том 2 (1967) -- [ c.2 , c.441 , c.442 ]




ПОИСК





Смотрите так же термины и статьи:

Окислитель



© 2025 chem21.info Реклама на сайте