Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кальций в силикатных породах

    Пример 2. Рассчитать навеску силикатной породы, содержащей около 5 /о СаО, которая необходима для определения кальция в виде aSOi, если g — масса осадка aSO 0,3 г. [c.67]

    При анализе глин, гранитоидов и других силикатных пород с различным содержанием основных компонентов кремния, алюминия, железа, кальция и магния и содержанием натрия от 0,5 до нескольких десятков процентов установлено, что кинетика испарения натрия из пробы в дуге переменного тока 5 А, положение градуировочных графиков и точность определения не зависят от валового состава пробы [89]. Не обнаружено также взаимного влияния натрия и калия. При относительно малом содержании щелочных металлов в состав буфера вводят карбонат лития, оксид меди и угольный порошок. При определении натрия в силикатах с содержанием щелочных металлов свыше 8% применяют метод ширины спектральных линий. [c.99]


    Этил- и бутилксантогенаты щелочных металлов применяются при обогащении руд тяжелых металлов (Си, N1, РЬ, 2п и др.) посредством флотации. Сернистые руды металлов содержат смеси силикатных пород (силикаты натрия, кальция, магния и др.) и сернистых соединений тяжелых металлов РЬ5 (свинцовый блеск), СиЗ (медный колчедан), 2п5 (цинковая обманка) и др. Для отделения сернистых соединений от пустой породы руду предварительно размалывают и взмучивают в воде. Если теперь прибавить к этой пульпе небольшое количество ксантогенатов, то молекулы их прочно адсорбируются на поверхности кристаллов руды (за счет ксантогеновой группы). Частицы руды с адсорбированным на поверхности ксантогенатом обладают способностью накапливаться на границе раздела в о-д а—в о 3 д у X (рис. 57). [c.419]

    Навеску 0,1 г силикатной породы в платиновой чашке растворяют в смес HF и НС1, раствор выпаривают с НС1. Сухой остаток хлоридов растворяют в воде и пропускают черев колонку с катионообменником Дауэкс 50W X 2 в Н-форме. Натрий десорбируют 0,4 М раствором НС1, элюат разбавляют водой до 250 мл. Кальций остается на колонке. [c.157]

    Алюмосиликаты [510] анализируют при сравнении линии кальция 3179 А с фоном около этой линии. Образец смешивают с карбонатом бария (1 3) и анализируют в дуге переменного тока. Спектральные методы анализа силикатных пород и минералов приведены в табл. 16. [c.134]

    По второму варианту ускоренного анализа силикатных пород при определении кальция и магния влияние Ре, А1, Т1 и небольших количеств Мп устраняют триэтаноламином после выделения кремнекислоты желатином. Метод позволяет комплексонометрически определять А1, Ке, Са, Mg без предварительного разделения. [c.193]

    Калий. Силикатные породы спекают по методу Смита со смесью карбоната кальция и хлорида аммония при 1000—1100°С в течение [c.16]

    Описанный выше ход анализа применим почти ко всем силикатным породам. Однако когда необходимо исключительно точное определение очень малого количества кальция в присутствии большого количества магния, надо применять метод, в котором кальций сначала осаждают в виде сульфата, а затем уже в виде оксалата (см. Щелочноземельные металлы , стр. 697). [c.964]

    Даже после того как образец разложен и кальций перешел в раствор, упомянутые выше высокоэффективные методы обычно нельзя сразу же применить для завершения анализа, поскольку все они основаны на реакциях или свойствах, присущих кроме кальция еще нескольким элементам. Так, образцы животной ткани, силикатной породы или стекла почти всегда неизбежно содержат один или два компонента, которые также будут осаждаться оксалатом, реагировать с этилендиаминтетрауксусной кислотой или влиять на результаты определения кальция методом атомноабсорбционной спектроскопии. Определению концентрации кальция поэтому обычно предшествуют стадии отделения его от мешающих примесей они могут включать несколько дополнительных операций. [c.191]


    Имеются указания на то, что при нагревании до 200° С кремнекислота полностью выделяется после однократной обработки, но мы не могли подтвердить этого, хотя количество кремнекислоты, переходящей в раствор после прибавления кислоты, очень мало, и редко превышает 2 или 3 мг. Поэтому при точной работе, если кремнекислота находится в количестве 2—4% и выше, ее следует отфильтровать после переведения в нерастворимое состояние, и раствор выпарить снова. Для этого смачивают сухой остаток 10 мл соляной кислоты, затем прибавляют 100 мл горячей воды, чашку покрывают часовым стеклом и ставят на баню на 10 мин. Затем переносят кремнекислоту на фильтр подходящей величины, тщательно промывают ее разбавленной (1 99) соляной кислотой и йотом дважды водой. Фильтрат выпаривают снова досуха, остаток обрабатывают так же, как и раньше, но половинным количеством соляной кислоты и воды и в течение нескольких минут. Раствор затем фильтруют еще раз через второй, меньший по размерам фильтр, фильтр и осадок промывают сначала холодной разбавленной (1 99) соляной кислотой, а затем горячей водой. Оба фильтра с их содержимым медленно, высушивают, озоляют и прокаливают в платиновом тигле, под конец в течение 10 мин при 1200° С. Чтобы исследовать прокаленный остаток на чистоту, прибавляют 6 мл фтористоводородной кислоты и 1—2 капли разбавленной (1 1) серной кислоты, выпаривают и продолжают работу, как описано на стр. 943. Остаток, который получается после прокаливания, всегда значительно меньше, чем находимый при анализе силикатных пород. После удаления серной кислоты почти всегда достаточно прокалить его 1—2 мин на полном пламени горелки (1000° С). По качественному составу он сходен с остатком, получаемым при анализе силикатов. Он никогда не содержит кальция и магния и состоит главным образом из окиси алюминия и небольшого количества [c.1051]

    Составьте схему подготовки пробы к анализу и пламенно-фотометрического определения калия, натрия и кальция в данном образце силикатной породы, представленной в грубоизмельченном виде. [c.95]

    Работа 3. Определение кальция в силикатных породах [c.198]

    Метод фотометрии пламени позволяет проводить определение калия, натрия в присутствии небольших количеств кальция, что сокращает операции отделения кальция при разложении силикатной породы по методу Смита. [c.185]

    Трудности анализа реальных веществ обусловлены сложностью и разнообразием их состава. Часто химик не в состоянии найти в литературе четко определенного и хорощо проверенного способа анализа он вынужден поэтому либо усовершенствовать существующие методы применительно к материалу данного состава, либо настойчиво искать новый способ. В любом случае каждый новый компонент вносит несколько новых переменных. Вновь рассматривая в качестве примера определение кальция в карбонате кальция, можно заметить, что поскольку число компонентов мало, то и на результаты анализа влияет сравнительно небольшое число факторов. Важнейшими среди них являются растворимость пробы в кислоте, растворимость оксалата кальция в зависимости от pH, влияние скорости осаждения на чистоту и фильтруемость оксалата кальция. Определение же кальция в реальных объектах, таких, как силикатные породы, содержащие дюжину или более других элементов, представляет собой гораздо более сложную задачу. Здесь аналитик должен учесть растворимость не только оксалата кальция, но и оксалатов других присутствующих катионов имеет значение также и соосаждение каждого из них с оксалатом кальция. Более того, для растворения пробы требуется более жесткая обработка и необходимы дополнительные стадии для устранения влияния мешающих ионов. Каждая новая стадия приводит к появлению новых факторов и делает тем самым теоретические рассуждения трудными либо вообще невозможными. [c.192]

    Смесь карбоната кальция и хлористого аммония служит для спекания силикатных пород. После обработки водой раствор используют для определения щелочных металлов, так как в водный раствор переходят щелочные металлы и частично кальций, а все остальные элементы остаются преимущественно в осадке. [c.62]

    Силикатную породу обрабатывают фтористоводородной кислотой, затем прибавляют окись кальция при этом ионы щелочных металлов остаются в растворе, ионы других металлов осаждаются. [c.35]

    При анализе силикатных пород петролог сначала знакомится с минералогическим составом и анализирует главным образом основные компоненты породообразующих минералов, присутствующие в больших количествах. Эти компоненты составляет небольшая группа элементов, количество которых рассчитывают в виде окислов они составляют 99% или более от веса большинства силикатных пород. Все анализы изверженных пород, которые принято считать полными, должны включать данные для тринадцати компонентов кремния, алюминия, железа (II и III), магния, кальция, марганца, титана, фосфора, натрия, калия, воды (выделяемой выше и ниже 105 °С). [c.15]


    Элементы, приводимые при анализе осадочных пород, в сущности те же, что и указанные выше для изверженных силикатных пород. В песчаниках и кварцитах преобладает кремний он иногда является единственным основным компонентом. Все другие элементы присутствуют лишь в подчиненных, или следовых количествах. Сланцы, илы и глины схожи с изверженными силикатами, потому что группа основных элементов присутствует в аналогичных соотношениях, хотя двуокись углерода, органическое вещество и пиритную серу они содержат, по-видимому, в повышенных количествах. Некоторые известняки состоят в основном из карбоната кальция, другие имеют большие количества марганца и железа. Известняки с песчанистой фракцией могут со- [c.16]

    Природные соединения и получение. По распространенности в земной коре Са занимает пятое место. Содержание стронция и бария намного меньше. Помимо силикатных пород, эти элементы встречаются в виде карбонатов и сульфатов СаСОз (кальцит), 5г504 (целестин), Ва504 (тяжелый шпат) и т. д. Общий их способ получения в свободном состоянии — алюмотермия в вакууме. Кроме того, Са еще получают катодным восстановлением расплава его хлорида. [c.131]

    При спектральном анализе растворов при помощи фульгуратора уменьшается влияние состава проб на интенсивность спектральных линий [99] и обеспечивается более высокая точность. С помощью фульгурирования определяют кальций в водах [1330], растворах силикатных пород [99], глинах [283], сталях [411], шлаках [232, 404, 409, 564. Этот прием также применен для анализа благородных [27, 62], редких, щелочных [208] и щелочноземельных [1017] металлов и других объектов. [c.115]

    Повышенное содержание урана в строительных материалах приводит к увеличению мопщости дозы внешнего у-облучения, но еще в большей степени — внутреннего облучения, связанного с эмиссией в обитаемые помещения. В 1980-х гг. сначала в Швеции и Финляндии, а затем в Великобритании и США были обнаружены жилые помещешм с концентрацией радона, в 5000 раз превышающей его концентрацию в наружном воздухе [5]. С 1930 г. для строительства зданий в Швеции широко использовался легкий бетон с наполнителем, изготовленным из квасцовых сланцев (см. табл. 7.9). Производство этих изделий было прекращено только в 1976 г. из-за их высокой удельной активности, особенно по Ra, достигающей 1200 Бк/кг. По данным [18], в этих зданиях к тому времени проживало около 10% населения Швеции. Высокая удельная радиоактивность была обнаружена в США у бетонов, в которых в качестве наполнителя применялся кальций-силикатный шлак, являющийся побочным продуктом переработки фосфатных руд. Таким же продуктом переработки фосфатных руд является фосфогипс, который относится к разряду промьпиленных отходов. Установлено, что этот материал также имеет высокую удельную радиоактивность по Ra, но до 1970-х гг. его использовали как строительный материал. Только в Японии в 1974 г. строительная промышленность израсходовала 3 млн тонн такого материала. Фосфогипс как строительный материал применялся также в США, ФРГ и в Швеции. Люди, живущие в таких домах, подвергаются облучению в среднем на 30 % более интенсивному, чем жильцы других домов, и, согласно расчетам, ожидаемая эффективная коллективная эквивалентная доза облучения в результате применения этого материала составляет около 300 ООО чел.-Зв [5]. Известны случаи применения в строительстве даже отходов урановых рудников. В 1962-1966 гг. пустая порода из отвалов обогатительных фабрик, производящих урановый концентрат, применялась в качестве строительного материала для засыпки площадок под дома (г. Гранд-Джанкшен, Колорадо, США) [19]. После обнаружения этого факта власти штатов приняли решение о необходимости проведения защитных мероприятий, включая такие, как удаление этих отвалов из готовых построек. [c.144]

    Для определения германия в силикатных породах поступают следующим образом. 0,5 0 тонко измельченной породы обрабатывают в платиновой чашке 3 мл разбавленной (1 1) серной кислоты, 0,5 мл концентриро ванной азотной кислоты и 5 мл фтористоводородной кислоты. Перемешивают и выпаривают до появления паров серной кислоты. По охлаждении прибавляют 2—3 мл воды, перемешивают и выпаривание повторяют, избегая продолжительного и обильного выделения паров кислоты. Операцию эту повторяют еще раз, после чего прибавляют 5 мл воды и нагревают почти до кипения в течение нескольких минут для разложения остатка. Охлаждают и возможно полно переводят массу в делительную воронку при помощи 5 мл соляной кислоты. Воронку закрывают пробкой и оставляют стоять, время от времени встряхивая, до растворений солей или в продолжение 30 мин, если осадок полностью не растворяется. Остающийся нерастворенным сульфат кальция в дальнейшем не вызывает затруднений. Прибавляют 10 мл соляной кислоты для повышения кислотности до порядка 9 М, перемешивают, охлаждают до температуры ниже 25° С и проводят экстракцию и колориметрирование германия так, как это указано выше. 1ерез все эти операции проводят также холостую пробу со всеми применявшимися реактивами. Доп. перев.  [c.355]

    Из обычно загрязняющих осадок вегцеств щелочные металлы удаляют двукратным осаждением оксалата кальция. Таким же способом отделяют малые количества бария, часто встречающиеся в силикатных породах . Если пpиQyт гвyeт большое количество бария, то часть его будет в осадке оксалата, и его надо впоследствии удалить вместе со стронцием. Оксалат стронция почти так же нерастворим, как оксалат кальция, и в условиях, при которых осаждается кальций, его осаждение происходит полностью Поэтом г стронций взвешивают вместе с кальцием, затем его отделяют и массу его вычитают. [c.702]

    Точное определение бария в известняке — задача более трудная, чем определение его в силикатной породе. Быть может лучше всего выделять барий (если он присутствует) из фильтратов от оксалата кальция. Фильтраты соединяют, выпаривают, освобождают от аммонийных солей (стр. 161), остаток растворяют в возможно меньшем количестве соляной кислоты, прибавляют, не фильтруя, несколько капель серной кислоты и оставляют па несколько часов. Осадок отфильтровывают, промывают, прокаливают и для удаления кремнекислоты выпаривают с одной каплей серной кислоты и несколькими каплями плавиковой кислоты. Полученный остаток растворяют в небольшом количестве горячей концентрированпой серной кислоты, вливают этот раствор в холодную воду, взятую в объеме нескольких миллилитров и тщательно обмывают тигель холодной водой, протирая его стенки палочкой с резиновым наконечником. Еслп теперь появляется осадок, то это сульфат бария его отфильтровывают, промывают и после прокаливания взвешивают. [c.1057]

    Благодаря более высокой концентрации кальция и магния в карбонатных породах (по сравнению с силикатными породами), они совместно определяются визуальным титрованием или при помощи нового автоматического титратора (см. рис. 21). Приводим метод, описанный Л. Шапиро и В. В. Бранноком [16]. [c.109]

    Схемы быстрого анализа горных пород обычно включают тит-риметрнческие методы для определения кальция и магния, хотя большие количества марганца иногда мешают анализу. В последние годы применение атомно-абсорбционной спектроскопии обеспечило возможность определения кальция и магния, а также марганца и железа. Несколько элементов, для которых такие методы особенно чувствительны, например цинк и медь, присутствующие в большинстве силикатных пород в следовых количествах, стали определять именно этим путем. [c.11]

    В тех слзшаях, когда концентрация окиси магния достигает приблизительно 2%, ее определяют титрованием с раствором эриохромчерного Т после осаждения кальция в виде оксалата. Если концентрация меньше, то более эффективной будет методика, применяемая в случае силикатных пород. [c.110]

    Разложение образца основной навески силикатной породы производится по методике 1. Количественное выделение кремниевой кислоты осуществляется прибавлением раствора желатины. Определение железа (общего), суммы алюминия и титана,, кальция, магния проводится титрованием раствором ЭДТА. При фотометрическом определении титана используется более чувствительная реакция взаимодействия титана с диантипирилметаном  [c.177]

    Навеску хорошо измельченной силикатной породы (0,5—1 г), взвешенную в бюксе на аналитических весах, тщательно перемешивают со смесью равного количества ЫН4С1 и шестикратного количества СаСОз, предварительно растертых в фарфоровой ступке. Дно чистого платинового тигля покрывают слоем карбоната кальция и количественно переводят в тигель полученную смесь, обмывая бюкс небольшими порциями хорошо растертого карбоната кальция. Покрывают содержимое тигля слоем карбоната кальция и помещают тигель в холодную муфельную печь, постепенно повышая температуру до 800° С. Следят, чтобы во время нагревания образца не происходило улетучивание КН4С1 (выделение белого дыма). Признаком правильного протекания процесса спекания является появление запаха аммиака во время нагревания. После прекращения выделения аммиака спекание продолжают при этой же температуре еще 1 ч. [c.183]

    Магматические нары, очевидно, имели температуру выше критической температуры чистох воды, обладали большой проникающей способностью и, таким образом, были в состоянии замещать большие массивы карбонатной породы, мало предрасположенные к трещиноватости и не имеющие других путей непосредственного проникновения. Гидротермальная минерализация, с другой стороны, обладала гораздо меньшей проникающей способностью, что доказывается ее очевидной зависимостью от трещин в перекристаллизованных известняках и ранних силикатных породах. Магнетит отлагался как из паров, так и из жидкости, но был сам изменен во время самых ноздних стадий гидротермальной деятельности, в процессе которых выделялись кальцит, кварц, сульфиды и цеолиты. Флюорит, содержащие алюминий силикатные минералы, спекулярит, гельвин, даналит, графит и пирротин откладывались частично в наиболее ранний гидротер [c.125]

    Классическая схема анализа силикатных пород подразумевает определение общего количества каждого из тринадцати наиболее часто встречающихся компонентов. Из них щелочные металлы определяют из отдельной навески, так же как и влагу, общую воду и закисное железо. Большинство аналитиков предпочитают также определять марганец, титан, фосфор и общее железо из отдельных навесок, считая, что только кремнезем, смешанные окислы , кальций и магний должны определяться из так называемой основной навески . Там, где количество силикатной породы, приготовленной для анализа, мало, навеску, используемую для определения влаги, применяют для определения элементов основной навески , а также для определения общего железа и иногда титана. Стронций, если он присутствует в количествах больших, чем следовые, осаждают с кальцием в виде оксалата, затем его отделяют и определяют весовым методом. [c.39]


Смотреть страницы где упоминается термин Кальций в силикатных породах: [c.307]    [c.93]    [c.146]    [c.199]    [c.148]    [c.307]    [c.356]    [c.693]    [c.267]    [c.191]    [c.60]   
Практическое руководство по неорганическому анализу (1966) -- [ c.963 ]

Практическое руководство по неорганическому анализу (1960) -- [ c.882 ]




ПОИСК







© 2025 chem21.info Реклама на сайте