Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение малых количеств в силикатных породах (до

    Определение малых количеств в силикатных породах (до 0,0005% ЫгО) [c.202]

    В слабощелочном растворе ванадат, хромат, молибдат, вольфрамат, арсенат и фосфат можно осадить нитратом одновалентной ртути Это отделение применялось для определения малых количеств ванадия в силикатных породах. [c.160]

    Перекись водорода образует желтую окраску с солями урана (VI) в растворе карбоната натрия или аммония. Реакция не особенно чувствительна, однако иногда ее можно применить к фильтрату после осаждения карбонатом натрия или же после сплавления с ним. На этой реакции основан метод определения урана в силикатных породах 1. Предел чувствительности такого метода лежит приблизительно при 0,01% урана. Влияние солей хрома (VI) можно компенсировать, помещая аликвотную часть анализируемого раствора в контрольную кювету фотоколориметра. Соединения молибдена (VI) и ванадия (V) также дают с перекисью водорода желтоватую окраску, однако последняя значительно менее интенсивна, чем образуемая ураном. Соли церия (III, IV) образуют интенсивную желтую окраску с перекисью водорода в карбонатном растворе (стр. 511). Фториды и фосфаты в малых количествах не влияют, однако в больших количествах (около 0,1 г аммониевой соли в 50 мл раствора) уменьшают интенсивность окраски. Силикаты практически не влияют. [c.493]


    Для получения хороших результатов методом фотометрии пламени необходимо стандартизовать условия, используемые при работе с прибором (давление газа, давление воздуха, соотношение горючего газа и воздуха), а также настройку прибора (ширина щели, разрешающая способность) и условия, используемые для приготовления анализируемого раствора (концентрация кислоты и соли). Влияние других элементов на эмиссию пламени щелочных металлов часто можно уменьшить введением в анализируемый раствор буфера излучения [10], такого, как сульфат аммония. Для точного определения малых количеств одного щелочного металла в присутствии очень большого избытка другого пока еще не найдено простого пути. Очень многие силикатные породы содержат как натрий, так и калий почти в одинаковых, благоприятных для анализа, количествах, и приемлемые результаты для этих двух металлов можно получать совершенно простым методом. [c.79]

    Определение малых количеств свинца в материалах с различной основой в настоящее время является важной задачей, поэтому кажется странным, что разработке новых реагентов для определения свинца уделяется так мало внимания. Однако для большинства целей дитизон является достаточно чувствительным, а в присутствии некоторых комплексообразующих агентов и достаточно избирательным реагентом. Сам реагент окрашен в темно-зеленый, почти черный цвет и дает в хлороформе или четыреххлористом углероде зеленые растворы, которые медленно разлагаются. Он легко реагирует с многими ионами металлов в растворе с образованием интенсивно окрашенных (в основном коричневых, оранжевых или красных) ко.мплексов, растворимых в органических растворителях. В присутствии цианид-ионов только свинец, висмут, таллий, олово (II) и, возможно, индий экстрагируются в виде дитизонатов. Висмут, таллий, олово и индий присутствуют в силикатных породах лишь в очень малых количествах и, по-видимому, не мешают определению. Однако все четыре элемента отделяют от свинца в процессе предварительного концентрирования, включающего экстракцию комплекса свинца диэтилдитиокарбаматом в органический раствор. [c.277]

    Один из старейших методов, иногда и сейчас применяемых для определения циркония (и гафния), основан на осаждении их в виде фосфатов из разбавленного сернокислого раствора. Это определение легко сочетать с определением других компонентов силикатных пород, таких, как хром, ванадий, сера и хлор в исходном щелочном фильтрате, а редкоземельных элементов и бария с цирконием в остатке. Этот метод приводится в руководствах по анализу горных пород, но в публикуемых методиках не упоминаются трудности, связанные с точными определениями малых количеств циркония [5]. [c.452]


    Четыреххлористый углерод был впервые применен для экстракции германия при его качественном открытии [241], а затем экстракция германия была изучена с количественной стороны [2421 и применена при определении следов германия в силикатных породах [103]. После этого экстракция германия четыреххлористым углеродом из соляной кислоты широко используется при определении малых количеств германия. Сравнение методов отделения германия дистилляцией и экстракцией четыреххлористым углеродом см. в [99, 121]. При экстракции германия четыреххлористым угле родом обычно применяется 9N ИС1. Из 5 N КС1 экстракция германия равна 2—3%, из б Л/ — 7—8%, из 8—ЮЛ — 100%. Влияние концентрации со- [c.413]

    При определении свинца в силикатных породах и биологических материалах, которые содержат только крайне малые количества тяжелых металлов, реагирующих с дитизоном, часто бывает выгодно выделить свинец, экстрагируя его дитизонат из щелочного цитратного раствора (не содержащего цианидов). Раствор дитизоната свинца в четыреххлористом углероде или хлороформе встряхивают затем с разбавленной (0,02 н.) соляной или азотной кислотой. Дитизонат свинца при этом разлагается, и свинец в ионной форме переходит в водную фазу, в которой его легко определить. При этой методике анализа свинец отделяется от меди (дитизонат которой практически не разлагается разбавленной азотной кислотой) и от железа, которое, как уже было сказано, окисляет дитизон в щелочной среде и поэтому должно отсутствовать в растворах, в которых нужно определять свинец. В некоторых случаях нет необходимости в специальном предварительном выделении свинца из раствора, содержащего цианиды свинец определяют непосредственно в присутствии цинка, добавляя цианид и экстрагируя стандартным раствором дитизона. [c.500]

    Метод [578, стр. 133] предназначен для определения очень малых количеств тория (нижний предел 0,0()1 % ТЬОг) и является основным при химическом выделении тория из фосфатных и силикатных пород различных видов. Методика сложна, ее выполнение занимает продолжительный промежуток времени, однако она может быть значительно упрошена для анализа менее сложных объектов. [c.163]

    Описанный выше ход анализа применим почти ко всем силикатным породам. Однако когда необходимо исключительно точное определение очень малого количества кальция в присутствии большого количества магния, надо применять метод, в котором кальций сначала осаждают в виде сульфата, а затем уже в виде оксалата (см. Щелочноземельные металлы , стр. 697). [c.964]

    Сочетание ионообменного обогащения с обычным спектральным анализом для обнаружения и определения следовых количеств компонентов минералов и горных пород также имеет практическое значение [48, 165]. Анионообменный метод применяли, нанример, для обнаружения золота и платиновых металлов в силикатных породах, когда содержание этих элементов столь мало, что их невозможно обнаружить прямыми спектральными методами [22]. [c.268]

    Вызывает удивление, что флуориметрические методы анализа растворов до сих пор используются относительно мало. Одним из наиболее известных применений флуориметрии является анализ для определения урана, выполняемый, однако, не в растворе. Пробу сплавляют с фторидом натрия в твердый перл и в нем определяют содержание урана. Напротив, бериллий в силикатных породах определяют в растворах [4], используя образующийся комплекс с мори-ном (пентаоксифлавоном). Подобным же образом определяют следовые количества галлия в породах, используя желтую флуоресценцию комплекса с 8-оксихинолином. Метод сочетает простоту с воспроизводимостью и точностью. [c.256]

    Фтористоводородную кислоту применяют главным образом для разложения силикатных пород и минералов, если кремний в них не подлежит определению кремний выделяются в виде тетрафторида. По окончании разложения избыток фтористоводородной кислоты удаляют выпариванием с серной или хлорной кислотами. Часто для успешного проведения анализа важно полностью удалить фтористоводородную кислоту, поскольку фторидные комплексы некоторых катионов чрезвычайно устойчивы свойства этих комплексов заметно отличаются от свойств свободных катионов. Так, алюминий нельзя полностью осадить аммиаком в присутствии даже малых количеств фторид-ионов. Часто следы фторид-ионов из анализируемого раствора удаляются так трудно и длительно, что это сводит до минимума преимущества применения кислоты в качестве растворителя силикатов. (Методы удаления фторид-иона см. [2].) [c.226]

    После удаления железа, алюминия и других элементов аммиачной группы кальций, находящийся в растворе, может быть осажден в виде оксалата совместно с малым количеством стронция, встречающимся в большинстве силикатных пород. В классическом методе определения кальция первый оксалатный осадок снова растворяют в разбавленной соляной кислоте и затем переосаждают из небольшого объема раствора. Этот прием позволяет получить осадок, почти полностью свободный от магния и марганца [1], который можно прокалить до окиси в платиновом тигле, как описано в гл.,4. [c.155]


    Хотя автор работы [9] считает, что в предварительном отделении германия нет необходимости, большинство авторов рекомендуют или дистилляцию, или экстракцию германия из раствора соляной кислоты как способ отделения от других элементов. Дистилляция позволяет также сконцентрировать германий в малом объеме и освободиться от всех элементов, за исключением некоторых количеств серы, мышьяка, сурьмы и олова, присутствующих в анализируемой породе. Обычно эти элементы присутствуют в силикатных породах в таком небольшом количестве, что не мешают определению. [c.236]

    Все применяемые для этого определения реагенты содержат небольшие количества железа, и поэтому раствор холостой пробы должен быть приготовлен очень тщательно. Применяемая посуда, особенно платиновые тигли и кюветы спектрофотометра, должна быть чистой. При анализе силикатных материалов, содержащих очень малые количества железа (жильный кварц или кварцит), для приготовления стандартного раствора железа можно использовать соль Мора, но если содержание железа в породе превышает 1%, применяют чистое металлическое железо. [c.266]

    Ф о с ф а т н о - и о д а т н о - и о д и ы й мет о д 1881 — для определения очень малых количеств тория (нижний предел 0,001% ТЬОз) — является основным при химическом выделении тория из фосфатных и силикатных пород. [c.381]

    Объемное определение в присутствии ванадия. Описанные дальше способы основаны на предположении, что ванадий присутствует только в очень малых количествах, как это бывает в силикатных породах, глинах и кремнистых известняках. В таких случаях в найденном обшем содержании железа будет небольшая ошибка, независимо от того, какой был применен восстановитель (см. Железо , стр. 403). Принимая во внимание вышеуказанное, рекомендуется в присутствии небольшого количества ванадия пользоваться только методом восстановления сернистым газом (см. Железо , стр. 406) даже при отсутствии титана. Когда количество ванадия известно, можно внести поправку, предполагая, что весь ванадий содержится [c.876]

    В условиях описанного ниже хода анализа ванадий дает желто-коричневую окраску. Ее интенсивность составляет /500 от интенсивности окраски, обусловленной равным по весу количеством вольфрама. Количество ванадия в силикатных породах слишком мало, чтобы заметно влиять на определение вольфрама. Уран, ниобий, тантал, фосфор, бор и платина (из посуды) в небольших количествах не мешают определению. [c.800]

    Наконец, можно принять, что бериллий не замещает никаких катионов в силикатных минералах, а кристаллизуется в виде самостоятельного бериллиевого минерала, особенно при поздней дифференциации, при которой отмечается его накопление. Малая концентрация бериллия в расплаве, вероятно, должна затруднять образование самостоятельного бериллиевого минерала, растворимость которого также крайне незначительна. Присутствие сколько-нибудь заметных количеств бериллия в жидких включениях невозможно. При этом в некоторых породах определенные акцессорные минералы, например ортит, могут захватывать некоторое количество бериллия. [c.17]

    Этот класс материалов включает породы вулканического и осадочного происхождения (сланцы, песчаники), простые силикатные минералы, золу растений и другие вещества в большей или меньшей степени содержащие кремний. Из приведенного выше обсуждения флуориметрического метода определения урана следует, что применение того или иного хода анализа зависит от чувствительности имеющегося флуорометра, содержание урана в анализируемом образце и требуемой точности определения. Если содержание урана превышает примерно 10 ч. на млн., в некоторых случаях можно применить прямые методы. Можно определить даже и меньшие количества урана, если анализируемый образец содержит мало веществ, уменьшающих флуоресценцию урана. Так было определено менее 10 ч. на млн. урана в золе растений для определения брали такую аликвотную часть раствора, которая соответствовала 50 у урана анализируемого образца при низком содержании урана этот метод требует применения чувствительного флуориметра. Для многих образцов содержание железа определяет максимально допустимый вес анализируемого образца, который можно взять на анализ, а также и наименьшее количество урана, которое можно определить без ошибок за счет гашения флуоресценции урана посторонними веществами. Обычно во флюсе весом примерно 2 г должно содержаться не более 10 у железа. Это значит, что в диске должно содержаться не более 0,1 мг анализируемого образца, содержащего 10% железа . [c.817]

    Содержание закисного железа в хороших стекольных песках незначительно его можно определить из навески 1 г при помощи свежеприготовленного 0,01н. перманганата. Титан встречается главным образом в ильмените и рутиле, а цирконий — в цирконе оба особенно нежелательны для стекольного производства ввиду их крайней тугоплавкости. Цирконий можно определить из навески 2,5 г, предварительно разложенной хлорной и фтористоводородной кислотами для удаления большей части кремнекислоты, затем остаток, даже еле заметный, прокаливают и сплавляют с содой. Весовой способ осаждения циркония в виде фосфата (описанный на стр. 117), обычно применяемый при анализе силикатных пород, не в состоянии обнаружить менее 0,01 % 2г02, даже если брать навеску не менее 1 г, поэтому следует предпочесть современный колориметрический метод. Грин [2] воспользовался для точного колориметрического определения циркония в силикатных породах красным лаком, образуемым ализаринсульфонатным комплексом циркония. Метод применим к определению окиси циркония при содержании его до 0,275 мг точность достигает 0,003 мг окиси циркония. До- сих пор не воз1никала необходимость в определении столь малых количеств циркония в породах, но не исключена возможность, что найдутся случаи, когда этот метод окажется лолезным. [c.185]

    Классическая схема анализа силикатных пород подразумевает определение общего количества каждого из тринадцати наиболее часто встречающихся компонентов. Из них щелочные металлы определяют из отдельной навески, так же как и влагу, общую воду и закисное железо. Большинство аналитиков предпочитают также определять марганец, титан, фосфор и общее железо из отдельных навесок, считая, что только кремнезем, смешанные окислы , кальций и магний должны определяться из так называемой основной навески . Там, где количество силикатной породы, приготовленной для анализа, мало, навеску, используемую для определения влаги, применяют для определения элементов основной навески , а также для определения общего железа и иногда титана. Стронций, если он присутствует в количествах больших, чем следовые, осаждают с кальцием в виде оксалата, затем его отделяют и определяют весовым методом. [c.39]

    Бромид олова заметно летуч, и метод отделения олова, основанный на его отгонке из раствора бромистоводородной кислоты, применялся Ониши и Сенделом для определения малых количеств олова в силикатных породах. Сначала удаляли отгонкой из солянокислого раствора мышьяк, сурьму и германий. Единственным элементом, сопровождающим олово в процессе отгонки бромида и оказывающим мешающее действие при последующем определении, является селен. [c.413]

    Одним из наиболее ценных реагентов на олово является сали-цилиденамино-2-тиофенол [17]. Этот реагент легко получить, и он образует с оловом комплекс желтого цвета, который можно экстрагировать для фотометрического измерения многими органическими растворителями (предпочтительнее ксилолом). Максимум оптической плотности находится при 415 нм (рис. 90), а закон Ламберта—Бера соблюдается в интервале до 45 мкг 5п в 10 мл ксилола (рис. 91). Молярный коэффициент погашения составляет около 15 000, что позволяет использовать реагент для определения малых количеств олова, характерных для обычных силикатных пород. Простой метод, обычно применяемый в практике определения олова в рудном анализе, дает ошибочные результаты на олово, поэтому необходимо вводить предварительную стадию отделения и концентрирования. [c.413]

    Бензолсульфиновая кислота С Нь80,Н [31] реагирует с цирконием так ж е, как и фениларсоновая кислота, только в менее кислой среде. Фенилар-соновая кислота и 4-диметиламиноазобензол-4-арсоновая кислота были применены Тузовой и Немодруком [158] для рентгеноспектрального определения малых количеств 2г и Н в силикатных породах. [c.307]

    СПЬЖТРАЛЬНОЕ ОПРЕДЕЛЕНИЕ МАЛЫХ КОЛИЧЕСТВ МОЛИБДЕНА И ВОЛЬФРАМА В СИЛИКАТНЫХ ПОРОДАХ И МИНЕРАЛАХ 1 [c.546]

    Ф о с ф а т и о-ф т о р и д н о-и одатный метод определения очень малых количеств тория в фосфатных и силикатных породах [c.163]

    Осаждение в щелочном растворе. Описанный ниже метод отделения кальция от магния и щелочных металлов применим всегда, за исключением тех случаев, когда магния значительно больше, чем кальция, или кальций присутствует в очень малых количествах. Анализ большинства горных пород и силикатных минералов может быть проведен способом, описанным в данном разделе. Как уже было указано выше, для точного определения необходимо но крайней мере двукратное осаждение кальция. Оптимальное количество хлорида аммония в растворе неопределенно, потому что большой излишек его уменьшает соосаждение магния и бария, но, с другой стороны, замедляет осаждение кальция и особенно стронция. Если анализ проводится обычным способом, то нет необходимости удалять церед осаждением аммонийные соли. Если же в резул >тате проведения каких-либо дополнительных операций в растворе скопилось большое количество аммонийных солей, то их надо удалить, как указано на стр. 161, или же выпариванием досуха подкисленного раствора в фарфоровой или платиновой посуде и дальнейшим осторожным прокаливанием так, чтобы поступающее тепло равномерно распределялось по внешней поверхности чашки и не вызывало слишком сильного выделения дыма. После этого смачивают остаток хлоридов или нитратов 2—3 мл соответствующей кислоты, растворяют соли добавлением небольшого количества воды и, если надо, фильтруют. [c.705]

    Объемное определение в присутствии ванадия. Описанные дальше способы основаны на предположении, что ванадий присутствует только в очень малых количествах, как это бывает в силикатных породах, глинах и кремнистых известняках. В таких случаях в найденном общем содержании железа будет небольшая ошибка, независимо от того, какой был применен восстановитель (см. Железо , стр. 441). Принимая во внимание вышеуказанное, рекомендуется в присутствии небольшого количества ванадия пользоваться только методом восстановления сернистым ангидридом (см. Железо , стр. 444) даже при отсутствии титана. Когда количество ванадия известно, можно внести поправку, предполагая, что весь ванадий содержится в исследуемом осадке, что, однако, нуждается в доказательстве. Ряд авторов подтверждает выпадение ванадия в осадок вместе с алюминием и железом при осаждении аммиаком или ацетатом аммония, но имеются указания и на то, что нри повторном осанедении аммиаком, [c.957]

    В статье Е. В. Sandell [Ind. Eng. hem., Anal. Ed., 8, 336 (1936)] описан колориметрический метод определения таких малых количеств, как 0,001% ванадия и хрома и 0,0001% молибдена, после обычного сплавления навески в 1 г силикатной породы с карбонатом натрия. [c.986]

    Определение незначительных количеств мышьяка (0,000п%), обычно находящихся в силикатных породах, недостаточно изучено, но следующий метод дает довольно удовлетворительные результаты для определения встречающихся очень малых количеств мышьяка. [c.346]

    На основании произведенного исследования предлагается методика выделения малых количеств бериллия на катионите КУ 2 и последующего его определения ериллоновым методом в силикатных породах. [c.8]

    Хорошо известно присутствие меди в горных породах в виде сульфидов (в халькопирите СпгРегЗз, халькозине СпгЗ и в малых количествах в пирите РеЗг), но факт частого вхождения ее в состав амфиболов, пироксенов, эпидотов и т. п. недостаточо оценен, В роговой обманке, отделенной от амфиболита, автор нашел 0,10% СиО. Если не выделять и не анализировать составляющие минералы, трудно установить минералогическую приуроченность меди в горной породе, когда присутствует сера. Обычно невозможно даже сказать, присутствует ли медь в виде сульфида или силиката, так как 0,04% металлической меди связывают только 0,01% серы в халькозине и 0,02% в халькопирите. Так как метод определения меди гораздо более точен, чем методы определения серы, то неправильно делать вывод при видймом отсутствии или недостатке серы, что медь приурочена к силикатным минералам, если только избыток меди не потребует по крайней мере нескольких сотых процента (или больше) серы. [c.260]

    С давних времен человек размышлял о происхождении и составе Земли и о большом разнообразии пород и минералов, из которых она состоит. Выдающиеся химики XVIII—XIX столетий занимались анализом неопознанных минералов в результате им удалось идентифицировать, а затем и выделить многие новые элементы. В конце XIX столетия И. Берцелиус, Л. Мейер, Л. Смит и другие разработали основы классической схемы анализа силикатных пород, используемого и в настоящее время. В конце прошлого столетия были предложены методы определения всех основных элементов. В 1920 г., после выхода в свет третьего издания книги Вашингтона Руководство по химическому анализу пород [1] и книги Гиллебранда Анализ силикатных и карбонатных пород [2], в которых были подведены итоги определения основных элементов, методы анализа горных пород стали распространяться на элементы, присутствующие лишь в малых количествах. Барий, цирконий, сера и хлор — элементы, которые могут быть определены надежными весовыми методами,— были вскоре добавлены к перечню основных компонентов, необходимых для полного анализа . После того как титан, ванадий и хром были признаны основными компонентами некоторых силикатных пород, для их определения разработали новые методы. [c.9]

    Несмотря на то что отгонка мышьяка в виде арсина АзНз все еще используется по традиции для его выделения и применялась Ониши и Сенделом [3] для анализа силикатных пород, этот метод имеет недостатки, обусловленные тем, что применяемые для реакции реагенты могут содержать такие же количества мышьяка, как и анализируемые пробы. Другим обычно используемым методом является отгонка хлорида мышьяка(1П) из водного солянокислого раствора при температуре не выше 108 °С. При этой температуре ни сурьма, ни олово не отгоняются. Если в анализируемом материале присутствует германий, то он будет сопровождать мышьяк, но это, по-видимому, определению не мешает. Малые количества селена также могут попасть в дистиллят [4]. В тех случаях, когда в одном растворе можно определеть и мышьяк и сурьму, например, полярографически [5], для дистилляции можно применять и более высокую температуру. Детали этого метода приведены в предыдущей главе (стр. 108). [c.113]

    Существует целый ряд методов определения общего содержания железа в силикатных и карбонатных породах. Материалы, содержащие лишь малые количества железа, чаще всего анализируют фотометрическими методами, но они широко применяются для определения железа даже там, где оно является основным компонентом. Мерци и Маундерс [17], однако, считают более ценными титриметрические, а не фотометрические методы, хотя различия, замеченные ими, совсем незначительны. Сравнение данных двух титриметрических и трех фотометрических методов показало, что результаты определения титриметрическими методами совпадают, но несколько отличаются от результатов фотометрического определения, хотя все пять методов дали приблизительно одинаковые средние значения. [c.262]

    Практика использования пирофосфатного метода показала, что породы, содержащие очень мало магния, дают при анализе классическим методом заниженные результаты. Из некоторых пород вообще не удается выделить магний до тех пор, пока не будет разрущен избыток аммонийных солей, и поэтому результаты определения магния занижены. Для анализа таких пород целесообразнее пользоваться весовым методом, где магний осаждается оксином. Этот метод неприемлем в случае больших количеств магния, поэтому, если порода обогащена магнием, анализируемый раствор следует разбавить до необходимого объема и для осаждения взять соответствующую аликвотную часть. Как и в пирофосфатном методе, необходимо осаждением аммиаком удалять большинство других компонентов силикатных пород. Желательно также перед осаждением магния удалить основную массу аммонийных солей. С этой целью обычно анализируемый раствор выпаривают и нагревают остаток с концентрированной азотной кислотой. Эту стадию анализа можно исключить, если для определения магния взята только часть раствора. [c.283]

    Спектрографическое определение микроэлементов в золе нефти. I. Сущность и особенности метода. Наибольшие затруднения при анализе золы нефти вызывает малое количество анализируемой навески. Необходимо учитывать и тот факт, что некоторые из определяемых элементов (например, ванадий, никель и др.) присутствуют в золе в относительно больших количествах. Вследствие многолиней-ности спектров этих элементов и сильного сплошного фона возникают определенные трудности при расшифровке спектрограмм. Эти осложнения могут быть устранены с помощью приема, предусматривающего значительное разбавление анализируемой навески пробы пустой породой . В качестве разбавителя нами применялся спектрально чистый кварцевый порошок. Использование приема разбавления проб, в свою очередь, дает возможность упростить задачу приготовления эталонов они готовились на основе кварцевого порошка. Кроме того, известно, что важнейшей предпосылкой получения достаточно надежных количественных результатов является стандартизация условий испарения проб различного состава и стабилизация условий возбуждения атомов определяемых элементов. Эти условия в значительной мере обеспечиваются в применяемой методике наличием в анализируемых пробах разбавителя (окись кремния) и введением щелочного буфера (хлорида калия), роль которого может быть сведена в основном к следующему быстрому сплавлению силикатной основы в королек надежной стабилизации условий возбуждения атомов определяемых элементов в дуговом разряде. [c.130]

    Методы разложения для анализа очень малых количеств тория, применимые к большинству силикатных и фосфатных пород и руд и обеспечивающие по. шое разложение образца, разработаны Фостером и сотрудниками [88]. Однако они непригодны для анализа концентратов, содержащих большие количества очень устойчивых минералов. При определении следов тория разлагают большие навески анализируемого образца, поэтому чтобы не вводить много щелочных солей лучше использовать летучие кислоты. Если при этом остается нерастворимый осадок, его переводят в раствор сплавлением с флюсом Ыа.,0.2 с Ма1 , смесью НаР с пиросульфатом ка-, шя или смесью МаоСО.-, с боратом натрия. [c.380]

    Фосфорновольфраматный метод может быть с успехом использован при определении небольших количеств ванадия, находящегося в силикатных породах. Ванадий выделяют из раствора после выщелачив ания плава карбоната натрия описанным выше методом экстракции раство ром 8-окси-хинолина в хлороформе СггОз в количестве до 1 % и нескол ько процентов фтора не мешают определению. Обычно молибден присутств ует в достаточно малых количествах и не влияет на результат определения (ср. табл. 121, стр. 834). Следующие значения иллюстрируют надежность метода (первое значение дает процентное содержание V2O3, введенного в си нтетическую основную породу, второе — найденное процентное содержание). [c.838]


Смотреть страницы где упоминается термин Определение малых количеств в силикатных породах (до: [c.93]    [c.184]    [c.244]    [c.264]    [c.309]   
Смотреть главы в:

Методы анализа по фотометрии пламени -> Определение малых количеств в силикатных породах (до




ПОИСК







© 2025 chem21.info Реклама на сайте