Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Редкоземельные элементы от ниобия и тантала

    Излагается технология редких металлов, нашедших широкое применение в атомной технике циркония, гафния, литня, бериллия, редкоземельных элементов, ниобия, тантала и ванадия. [c.2]

    На примере разделения редкоземельных элементов, ниобия, тантала и титана исследованы некоторые возможности повышения чувствительности метода. [c.358]


    Нахождение в природе. Содержание скандия в земной коре оценивается равным 0,0006%. В природе скандий рассеян и встречается лишь в виде незначительной примеси в минералах редкоземельных элементов, бериллия, тантала, ниобия, олова, вольфрама, циркония, титана, алюминия, а также в золах углей, природных водах и окаменелых остатках рыб. Для получения 1 г оксида скандия нужно переработать 3—4 кг гадолинита, [c.205]

    Горнорудная промышленность 1) классификация горных пород при изучении залежей различных руд 2) сепарирование соединений редкоземельных элементов (цирконий, тантал, ниобий) 3) выделение алмазной пыли из шламов - [c.10]

    Вып. 5. 1959. [Аналитические методы для бериллия, галлия, индия, молибдена, ниобия, стронция, редкоземельных элементов, рения, тантала, циркония]. [c.30]

    Химические свойства 4/-элементов (лантаноидов) в основном схожи со свойствами лантана, поэтому разделение лантаноидов (называемых также редкоземельными элементами) сильно затруднено. Поскольку 4/-электроны слабо экранируют заряд атомного ядра, размеры ионов лантаноидов +3 уменьшаются от Ьа к Ьи они мало отличаются от размеров иона У +, принадлежащего предыдущему периоду. Этот эффект получил название лантаноидного сжатия. Он проявляется и у соответствующих пар элементов других побочных подгрупп — циркония 7г и гафния Н в IV группе, ниобия КЬ и тантала Та в V, молибдена Мо и вольфрама в VI группе. [c.153]

    Селективность (избирательность), высокая производительность и возможность осуществления экстракционного процесса в непрерывном варианте и в крупных масштабах обусловливают применение этого метода для очистки топлива, масел в нефтяной и коксохимической промышленности, в технологии органических производств, в качестве метода разделения близких по свойствам элементов в гидрометаллургии (редкоземельных элементов — семейства лантаноидов, иттрия и скандия циркония и гафния ниобия и тантала металлов для ядерной энергетики). [c.81]

    В химической промышленности применяют экстракцию для извлечения уксусной кислоты из разбавленных водных растворов, муравьиной кислоты из ее азеотропной смеси с водой аконитовой кислоты из патоки кислот, альдегидов, кетонов и спиртов из продуктов окисления природного газа хлорбензола в производстве синтетического фенола для обезвреживания промышленных стоков для очистки едкого натра от хлоридов и хлоратов натрия для выделения перекиси водорода из продуктов каталитического гидрирования 2-этилантрахинона для получения высококачественной фосфорной кислоты, силиконов высокой степени чистоты и др. Методом экстракции пользуются в коксохимической промышленности (извлечение фенолов и ароматических углеводородов), в химико-фармацевтической (выделение многочисленных природных и синтетических соединений, в том числе антибиотиков и витаминов) в пищевой промышленности (для очистки масел и жиров) в металлургических процессах (для извлечения урана и тория, для регенерации облученного ядерного горючего, для разделения ниобия и тантала, циркония и гафния, редкоземельных элементов) и т. д. [c.562]


    Более подробные сведения по всем рассмотренным в книге вопросам учащиеся могут найти в литературе, список которой приведен в конце книги, а также в серии монографий, вышедших в издательстве- Наука и посвященных аналитической химии отдельных элементов алюминия, кобальта, никеля, цинка, кадмия, олова, циркония, гафния, ниобия, тантала, вольфрама, молибдена, рения, редкоземельных элементов, иттрия, индия, галлия, таллия, кремния, азота п серы. [c.4]

    Рентгеноспектральный (рентгенофлуоресцентный) анализ пригоден для определения содержания всех элементов, атомный номер которых >13, т. е. начиная с алюминия. Особое преимущество метод имеет ири анализе смесей элементов, близких по свойствам, наиример редкоземельных элементов, тантала и ниобия. Рентгеноспектральный метод применяют для анализа руд, сплавов, металлов,. различных продуктов химической технологии. Диапазон определяемых концентраций очень широк можно определять макро- (от 1 до 100%) и микро- (10 —10- 7о) компоненты. [c.44]

    В настоящее время хлорная металлургия применяется для производства титаиа, ниобия, тантала, циркония, гафния, редкоземельных элементов, германия, кремния, олова и даже алюминия. Она является эффективной при переработке не только многокомпонентных руд, но и промышленных отходов, содержащих ценные элементы, металлолома, отработанных тепловыделяющих элементов ядерных реакторов и т. п. Она нашла широкое применение в металлургии редких металлов. Преимуществами хлорной металлургии по сравнению с традиционными способами извлечения металлов из руд являются полнота вскрытия сырья (полнота извлечения из него ценных элементов), а также высокая избирательность. Метод требует совершенной технологии и высокой культуры производства, поскольку хлор и его летучие соединения очень токсичны и химически агрессивны. [c.171]

    Хлорирование в настоящее время широко используют в технологии редких металлов для перевода рудных концентратов и некоторых промежуточных продуктов технологии в хлориды, удобные для последующего разделения, очистки и получения металлов. Хлорирование является основным методом, используемым в технологии титана. Хлорируется значительная доля рудных концентратов циркония и гафния, тантала и ниобия, редкоземельных элементов и др. Фторирование применяют в-значительно меньшем масштабе, главным образом для получения фторидов редких металлов из окислов или вторичных металлов с целью их металлотермического или электрохимического восстановления. Хлорирование и фторирование широко используют при переработке комплексных руд и различного рода сложных композиций окислов или металлов, так как различие в температуре плавления и температуре кипения хлоридов и фторидов редких металлов позволяет успешно разделять их и осуществлять их тонкую очистку. На основе процессов хлорирования и фторирования созданы короткие, изящные технологические схемы. Благодаря высокой реакционной способности хлора и фтора процессы хлорирования и фторирования практически осуществляются нацело, и степень перевода исходных материалов в хлориды и фториды колеблется между 98 и 100%. Их огромным преимуществом перед другими методами вскрытия и переработки рудных концентратов и других соединений редких металлов является отсутствие сточных вод и сброса в атмосферу. Создание технологических схем без водных и атмосферных сбросов является эффективной мерой по охране природы. [c.65]

    В производствах редких металлов экстракцию из растворов метилизобутилкетоном и ТБФ проводят для разделения циркония и гафния. Для разделения фторидов тантала и ниобия используют экстракцию цикло-гексаноном и ТБФ. Экстракционные методы широко применяются для получения концентратов редкоземельных элементов и для выделения индивидуальных лантаноидов. Чрезвычайно перспективно широкое проникновение методов экстракции в гидрометаллургию цветных металлов. [c.36]

    Ванадий, титан, ниобий, тантал, цирконий, рений и редкоземельные элементы. Влияние этих элементов наиболее полно [c.81]

    При электролизе сернокислых растворов солей на ртутном катоде выделяются железо, медь, никель, кобальт, цинк, германий, серебро, кадмий, индий, олово, хром , молибден, свинец, висмут, селен, теллур, ртуть, золото, платина,, иридий, родий, палладий. Остаются полностью в растворе алюминий, бериллий, бор, тантал, ниобий, вольфрам, редкоземельные элементы, титан, ванадий, цирконий и др. Рутений, мышьяк и сурьма количественно не выделяются. [c.138]

    В последние годы опубликован ряд работ, посвященных хроматографическому разделению редкоземельных элементов [9, 10, 15—18] и смеси ниобия, тантала и титана [20—23]. [c.361]

    Научные работы относятся ко многим областям химии. Определил (1842—1883) атомные массы 29 элементов. Разработал (1866) способ разделения ниобия и тантала. Открыл (1878) иттербий. Обнаружил (1880) окись неизвестного редкоземельного элемента, впоследствии (1886) идентифицированного как гадолиний. Установил тождество озона и кислорода. Показал ошибочность гипотезы У. Праута. Исследовал изоморфизм фтористых силикатов с фтористыми оловосодержащими силикатами. [324, 336, 340, 341] [c.323]


    Метод меченых атомов позволил разрешить ряд теоретических вопросов аналитической химии, как то состояние вещества в растворах, определение констант нестойкости комплексных соединений, изучение процессов соосаждепия, старение и растворимость аналитических осадков и др. Радиоактивные изотопы дали возможность разработать новые более эффективные методы разделения элементов, особенно с близкими химическими свойствами, как например, редкоземельные элементы, ниобий, тантал, титан, цирконий, гафний, рубидий, цезий и др. Особенно много работ выполнено по разделению элементов методами соосаждения, экстрагирования органическими растворителями, ионообменной хроматографии, электрофореза. [c.3]

    В настоящей работе рассмотрены возможности применения распределительной хроматографии для относительного концентрирования на примере разделения и аналитическаго определения смеси редкоземельных элементов, ниобия и тантала. [c.361]

    Возможными продуктами разложения серной кислотой, как следует из рассмотренных выше диаграмм равновесия, могут быть сульфаты титана, ниобпя, редкоземельных элементов и двойные сульфаты титана с кальцием и редкоземельными элементами. Ниобий и тантал при преобладании титана не образуют самостоятельных соединений и входят в состав титановых фаз. [c.46]

    Определению титана при помощи диантипирнлметана не мешают ионы магния, алюминия, цинка, кадми , марганца, меди, циркония, редкоземельных элементов, молибдена, ниобия и тантала, поэтому метод можно применять для определения титана в легких, черных и цветных сплавах. Ионы никеля, хрома и кобальта не реагируют с диантипирилметаном, но мешает собственная окраска ионов поэтому раствор сравнения должен содержать все компоненты, кроме диантипирилме-тана. Ионы железа (III) и ванадия (V) предварительно восстанавливают гидроксиламином. [c.374]

    Разложение серной кислотой. Обрабатывая концентраты серной кислотой, получают растворимые сульфаты. При добавлении воды к раствору гидролитически выделяются ниобий и тантал. Остальные элементы остаются в растворе. Суш,ествует несколько технологических вариантов способа. Однако широкое применение его ограничено из-за большого расхода реагентов и неудовлетворительного разделения ниобия, титана и редкоземельных элементов. Можно выделить ниобий жидкостной экстракцией, например метилнзобутилкетоном. [c.70]

    Удаление ниобиотанталатов, титаноколумбатов и ти-таносиликатов можно также начать обработкой минерала фтористоводородной кислотой. Эта методика имеет то преимущество, что ниобий, тантал, уран (4), скандий, титан, цирконий и гафний растворяются , а кремний улетучивается в виде четырехфтористого кремния редкоземельные элементы остаются в форме трудно растворимых фторидов. Затем остаток нагревают с кон- [c.38]

    Бибер и Вечержа [373] и независимо от них Маджумдар и Чоудху-ри [728] предложили весовой метод определения шестивалентного урана осаждением с помощью купферона. Количественное осаждение имеет место при pH в пределах 4—9. Вследствие более высоких значений pH осаждения мешающее влияние других элементов в данном случае оказалось значительно большим, чем при осаждении четырехвалентного урана. Однако теми же авторами [373, 728] было показано, что применение комплексона III позволяет устранить мешающее влияние подавляющего большинства элементов. В этих условиях полностью остаются в растворе щелочные и щелочноземельные элементы, Mg, Ag, Hg, РЬ, Си, Сё, Мп, Zn, Со, Ni, В1, Ре, Ое, 5п, ТЬ, Ьа, Се и редкоземельные элементы. Определению также не мешают небольшие количества титана (IV) и циркония. Мешающее влияние алюминия, сурьмы (III), олова (IV), ниобия и тантала устраняют прибавлением винной кислоты. Присутствие [c.71]

    Урановые минералы, как известно, по своему происхождению делятся на первичные и вторичные. Первичные минералы в большинстве представляют собой соединения окислов урана (IV), титана, железа, тантала, ниобия, редкоземельных элементов и др. К их числу относятся уранинит с его разновидностями, урановая смолка и др. все первичные минералы урана хорошо растворяются в разбавленной и концентрированной HNO3, а также в HGI и H2SO4 в присутствии окислителя. [c.343]

    Гравиметрическое определение суммарного содержания ниобия и тантала в технической смеси гидроксидов редкоземельных элементов и оксифторниобате калия [c.161]

    Осаждение щавелевой кислотой. Щавелевая кислота образует малорасгворнмые оксалаты с катионами многих металлов. Оксалат аммония при pH —8 полностью осаждает ионы кальция, стронция, скандия, иттрия, лантана, редкоземельных элементов, актиния, железа, золота, висмута, индия, олова, ниобия, тантала частично осаждает ионы лития, бериллия, магния, бария, радия, титана, циркония, гафния, тория, марганца, кобальта, никеля, ртути, таллия и свинца. При некоторых условиях осаждаются также ванадий и вольфрам. При pH 3—4 полностью осаждаются ионы кальция, стронция, скандия, иттрия, лантана, редкоземельных элементов, актиния, тория и золота неполностью осаждаются ионы бария, тантала, марганца, кобальта, никеля, меди, серебра, цинка, кадмия, олова, свинца и висмута. [c.98]

    Экстракция получает широкое применение в технологии редких металлов для разделения близких по свойствам элементов [301. Так, для разделения рубидия и цезия наиболее перспективными из опробованных в настоящее время экстрагентов являются замещенные фенолы цирконий и гафний разделяют в промышленности экстракцией родапидов этих метал.лов метализобутилкетоном или нитратов трибутилфосфатом. С помощью этих экстрагентов можно разделить также ниобий и тантал из растворов смесей плавиковой и других минеральных кислот. Молибден и вольфрад разделяются при экстракции ацетофеноном. Редкоземельные элементы делят экстракцией грибутилфосфатом в присутствии высаливателей или из концентрированных растворов азотной кислоты. Хотя коэффициенты разделения соседних пар элементов малы, при наличии нескольких десятков ступеней экстракции возможно получить индивидуальные РЗЭ в чистом виде. Более высоким коэффициентом разделения при экстракции РЗЭ характеризуется ди-2-этилгексил-фосфорная кислота. [c.13]

    Предлагаемая читателю книга д-ра хим. наук проф. Г. А. Ягодина, канд. хим. наук О. А. Синегрибовой и А. М. Чекмарева посвящена химической технологии именно тех редких металлов, которые используют в атомной технике, и написана на основе специального курса лекций, читаемого авторами на инженерном физико-химическом факультете Московского ордена Ленина и ордена Трудового Красного Знамени химико-технологического института им. Д. И. Менделеева. Таким образом, круг рассматриваемых редких металлов ограничен такими металлами, как литий, бериллий, редкоземельные элементы, цирконий, гафний, ниобий, тантал, молибден, вольфрам и титан. Ввиду того, что химия и технология редких металлов, относящихся к естественным или искусственным радиоактивным элементам, читается в отдельных специальных курсах, эти разделы в данном учебном пособии не излагаются. [c.3]

    Концентраты нефтяных сульфоксидов являются эффективными экстрагентами при извлечении и разделении радиоактивных и редких металлов урана, циркония, тория, гафния, ниобия, тантала, редкоземельных элементов (лантанидов), теллура, рения, золота, палладия и др. Эти экстрагенты являются полноценными заменителями трибутилфосфата и индивидуальных сульфоксидов. Например, константа экстракции уранилнитрата для концентрата нефтяных сульфоксидов равна 4000, дпоктилсульфоксида — 1260, трибутилфосфата— 100. [c.730]

    Особенностью реагентов и образуемых ими комплексов с элементами является их сравнительно легкая экстрагируемость полярными растворителями, благодаря чему они пригодны для экстракционно-фотометрических схем определения элементов. С пиридилазорезорцином [43—46] описаны методы определения ниобия [35, 47], тантала [35, 36], кобальта [48], палладия [49. Пиридилазонафтол [50] применяется для определения отдельных редкоземельных элементов [51], индия, галлия, урана и ряда других элементов [52]. Есть очень обстоятельный обзор по аналитическому применению пиридиновых азосоединений [53]. [c.128]

    Для ряда металлов окклюзия водорода сопровождается тепловыделением. Такие металлы называют экзотермическими окклюдерами. Основные из них палладий, ванадий, титан, ниобий, тантал, цирконий, торий, редкоземельные элементы. В этом случае наводороживание с ростом температуры понижается. Для таких металлов как никель, железо, кобальт, медь, алюминий, платина, серебро, олово, магний поглощение водорода сопровождается поглощением тепла и для них с ростом температуры наводороживание растет. Такие металлы — эндотермические окклюдеры. Они менее склонны к образованию гидридов, чем экзотермические окклюдеры. [c.500]


Смотреть страницы где упоминается термин Редкоземельные элементы от ниобия и тантала: [c.169]    [c.353]    [c.16]    [c.295]    [c.38]    [c.319]    [c.38]    [c.11]    [c.17]    [c.145]    [c.451]    [c.738]   
Практическое руководство по неорганическому анализу (1966) -- [ c.622 ]

Практическое руководство по неорганическому анализу (1960) -- [ c.569 ]




ПОИСК





Смотрите так же термины и статьи:

Ниобий тантале

Тантал

Элементы редкоземельные



© 2024 chem21.info Реклама на сайте