Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гриньяра реактив механизм

    В случае подобного механизма можно ожидать протекания побочной реакции, в процессе которой реактив Гриньяра соответствующего строения (а именно имеющий водород у р-угле-родного атома) превращался бы в олефин. При этом должен был бы происходить перенос гидрид-иона на положительно заряженный атом углерода карбонильной группы  [c.213]

    Для получения карбоновых кислот широко применяют металлоорганические соединения, образующие кислоты с высокими выходами. Наиболее широко используется реактив Гриньяра, однако в последние годы все большее применение находят литийорганические соединения, что, по-видимому, частично обусловлено наличием в продаже простейших литийорганических соединений, применяемых для реакции металлирования. Механизм этой реакции, как показано для реакции с реактивом Гриньяра, включает, вероятно, первоначальную быструю координацию иона магния с атомом кислорода двуокиси углерода с последующей нуклеофильной атакой группы R скорость последней стадии определяет скорость всей реакции [c.255]


    Каков бы ни был механизм реакции, наиболее вероятным кажется то, что именно аналогичный обмен обусловливает протекание восстановительной конденсации в упомянутых выше реакциях, поскольку вновь образующийся реактив Гриньяра [c.192]

    Механизм процесса определяется не только катализатором, а и определенным сочетанием катализатора и мономера. Так, трехфтористый бор, широко известный как катионный катализатор, используется как катализатор радикальной полимеризации акрилонитрила Реактив Гриньяра, инициирующий анионную полимеризацию метилметакрилата, вызывает полимеризацию винилалкиловых эфиров по катионному механизму [c.105]

    Это замечание справедливо в случае отдельных атомов Мд, изолированных в матрице. Важная реакция алкилгалогенидов с металлическим магнием, в ходе которой образуется реактив Гриньяра, все еще не понятна. Некоторые экспериментальные данные свидетельствуют в пользу свободнорадикального механизма, тогда как другие — нет [1096]. Скорость реакции заметно зависит от поверхности магния и от присутствующих примесей. Энергии активации для различных органических галогенидов коррелируют с потенциалами полуволны восстановления галогенидов Это указывает на образование ВХ как промежуточных частиц. [c.455]

    Следует подчеркнуть, что механизм и течение процесса полностью определяются подбором катализатора и мономера. Например, реактив Гриньяра, инициирующий анионную полимеризацию метилметакрилата, при добавлении к алкилвиниловым эфирам вызывает их катионную полимеризацию трехфтористый бор, широко известный как катионный катализатор, в ряде случаев используется в качестве катализатора радикальной полимеризации акрилонитрила.  [c.124]

    Реактив Гриньяра, полученный из 1-хлоро-3,3-диметилпен-тана в эфире, претерпевает быструю инверсию конфигурации у соединенного с магнием атома углерода (это показано по ЯМР-спектрам соединение нехирально) [117]. Механизм такой инверсии не совсем ясен. [c.238]

    Этот Синтез [66] приводит к олефинам с нечетным "числом атомов углерода и с двойной связью в центральной части молекулы. Используют реактив Гриньяра или литийалкил и дифтордибромметан или трифторбромметан в качестве тетрагалогенида углерода. Из первичных галогенидов получают алкены, из вторичных — преимущественно непредельные галогениды. Предполагается [66], что образуется дигалокарбен, например Ср2, и что он сначала внедряется между атомами углерода и металла. Подробно механизм реакции рассмотрен в оригинальной работе. Метод этот простой, и выходы, исходя из ряда первичных галогенидов, колеблются от 37 до 72%. а) Получение нонена-4. К реактиву Гриньяра, полученному [c.151]


    О несколько необычной реакции сообщили Клагес и Меш [133], которые действием этилмагнийбромида на 1-фенил-3,3-диметилтриазен в кипящем тетрагидрофуране получили 1,4-диэтил-2,5-дифенилгексагидро-сии<и1-тетразин. Механизм этой реакции, по мнению авторов, близок к механизму взаимодействия формальдегида с гидразинами реактив Гриньяра расщепляет триазен до 1,2-дизамещенного гидразина и N-мeтилмeтилeниминa, который служит источником метиленовых групп. [c.118]

    В качестве одного из агентов восстановл ния применяют реактив Гриньяра. Обычно реакции ведут при нагревании, иногда кипячении в инертном сухом растворителе (бензол, тетрагидро-фуран) с последующим гидролизом промежуточного продукта. По-видимому, взаимодействие триазинов с реагентами Гриньяра протекает по общему механизму электрофильного замещения. Вначале происходит атака по второму или четвертому атомам азота кольца с появлением положительного заряда на азоте, а затем присО вдинение алкильного (арильного) заместителя по положению 5 кольца. Последующий гидролиз ведет к отщеплению МдХ [558]  [c.217]

    Часто структура предшественника однозначно не устанавливается, однако определяется его химическая природа в соответствии с механизмом пре-враш ения. При этом предшественник в обобщенном виде может быть представлен реакционноспособной частицей, называемой синтоном. Источником синтона могут служить один или несколько реагентов, которые называют синтетическими эквивалентами. Например, реактив Гриньяра RMgX и литийорганический реактив КЫ могут рассматриваться в качестве синтетических эквивалентов карбаниона К (синтона). [c.511]

    Обмен функциональными группами между реакти.вом Гриньяра и органическим галогенидом наблюдался, хотя и редко [128]. Караш [128] предложил для этой реакции радикальный механизм, по крайней мере в том случае, когда в органическом галогениде отсутствует активный водород. В 1960 г. Мори-сон [175] привел доказательство такого радикального механизма, которое состояло в том, что происходил обмен функциональными группами между реактивом Гриньяра и бензилгалогеио-производными по следующей реакции  [c.192]

    Упражнение 12-7. Можно ли ожидать, что продукты были бы теми же, если вместо присоединения по карбонильной группе ацилгалогениды реагировали бы путем обычного 8к2-замещения галогена (реактив Гриньяра служил бы при этом источником К ) Объясните, почему простое замещение вряд ли может быть правильным механизмом, основываясь на том факте, что ацилфториды реагируют с реактивами Гриньяра быстрее, чем ацилхлориды, которые в свою очередь реагируют быстрее, нем ацилбромиды. [c.317]

    Кислород. Если реактив Гриньяра выдерживать на Еюздухе или в кислороде, происходит поглощение кислорода, сопровождающееся хемилюми-несце щией, причем особенно интенсивным свечением сопровождается окисление /г-хлорфенилмагнийбромида. Можно считать, что подобно другим автоокислительным реакциям, эта реакция протекает по радикальному механизму и, по-видимому, включает следующие стадии  [c.392]

    В 20-х годах наряду с работами прикладного характера и дальнейшим использованием магнийорганических соединений для синтеза в СССР стали появляться работы теоретического характера. Н. В. Кондырев изучил свойства алкилмагнийгалогенидов как электролитов А. П. Терентьев показал, что реактив Гриньяра состоит из сольватных комплексов, содержащих два атома магния. В 30-х годах в работах А. Е. и Б. А. Арбузовых, А. Д. Петрова, А. П, Несмеянова с сотр. были решены некоторые вопросы строения промежуточных продуктов и механизма реакций магнийор-1 анического синтеза. Была доказана возможность гетеро- и гомолитиче-ских магнийорганических реакций в зависимости от природы растворителя открыты многие аномально протекающие реакции. П. П. Шорыгин и сотр. разработали метод получения хлористого фенилмагния без эфира в автоклаве при взаимодействии с окисью этилена был получен Р-фенилэтиловый спирт. Затем Л. И. Захаркин, О. Ю. Охлобыстин и Б. Н. Струнин разработали способ получения магнийорганических соединений вне растворителя, предложив этот способ для синтеза разнообразных элемеитоорганических соединений. [c.85]

    В число типичных нуклеофильных реагентов входят аммиак и его производные, НСМ, NaHSOз и реактив Гриньяра. Предложенное Лэпуортсом доказательство электрофильной природы карбонильных соединений з е обсуждалось ранее [164]. Все реакции, о которых здесь идет речь, обратимы и имеют механизм, сходный с механизмом образования циангидрина [164]. [c.146]

    В учебниках образование соединений Гриньяра представляют в сильно упрощенном виде RX- Mg->R—Мд—X, где X — галоген. Речь идет о реакции на поверхности магния, для которой считают вероятным радикальный механизм [249]. Поэтому оптически активные галогениды превращаются в рацемические соединения Гриньяра [250], хотя удавалось получить и оптически активные магнийорганические соединения, однако с малой оптической чистотой. Соответственно из экзо- или эк5о-норборнилхло-рида образуется реактив Гриньяра одинакового состава (54% эндо, 46% экзо) [251]. Используемый в качестве растворителя эфир играет важную роль он сольватирует реактив Гриньяра и тем самым освобождает поверхность для дальнейшей реакции. [c.371]


    Известно большое число соединений, используемых в качестве катализаторов анионной полимеризации лактамов. Это — щелочные, щелочно-земельные металлы, гидриды, реактив Гриньяра, оксид лития, различные гидроксиды и карбонаты, сульфаты, галогениды, цинкат натрия, щелочные соли различных кислот, т. е. соединения, способные вызвать в реакционной среде образование аниона лактама. Наиболее полно изучен механизм полимеризации в присутствии натрий-лактамов — соединений, представляющих собой соль лактама. [c.9]

    Механизм восстановления нитросоединений рассмотрен также в работе А. Расса [102], который применял в качестве восстановителя реактив Гриньяра и литийалюминийгидрид [103]. [c.184]

    Реакция восстановления была обнаружена еще Гриньяром [45], а в 1929 г. Конэнт и Блэтт [46] нашли, что восстановлению способствует применение пространственно затрудненных кетонов 31). Уитмор и Джордж [47] указали на связь между степенью восстановления диизопропилкетона и наличием атомов водорода у Р-ато-ма углерода в реактиве Гриньяра 32). Особенно поразителен тот факт, что реактив Гриньяра, содержащий неопентильную группу, в которой нет р-атомов водорода, не вызывает восстановления, тогда как реактив Гриньяра с щ эт-бутильной группой, в которой имеется девять р-атомов водорода, обусловливает восстановление с выходом 95%. На основании этих наблюдений Уитмор предположил ), что реакция восстановления нод действием реактивов Гриньяра протекает в результате обратимого образования комплекса 33. в котором затем происходит перенос водорода от реагента к субстрату. Пространственная затрудненность карбонильной группы в 31 подавляет реакцию присоединения и способствует переносу атома водорода, занимающего малый объелг. от Р-атома углерода в реактиве Гриньяра, 1 ак показано в 34Б. с образованием алкоголята магния 35) и олефина 36). Конечный результат после гидролиза состоит в восстановлении кетона в карбинол под действием реактива Гриньяра, который окисляется до олефина. Образование эквивалентных количеств олефина и карбинола было продемонстрировано неоднократно. Кроме того, перенос исключительно только Р-водорода был впоследствии доказан опытами с применением дейтерия [49]. Сходство механизмов реакции восстановления по Меервейну — Понндорфу — Верлею и под действием реактива Гриньяра очевидно. Однако основное различие механизмов состоит в том, что реакция Гриньяра в значительной степени необратима в противоположность равновесному процессу переноса водорода с применением алкоголятов. [c.213]

    Ионная полимеризация. Как все виниловые мономеры, акрилонитрил может полимеризоваться по ионному механизму. В зависимости от заряда, приобретаемого углеродом, полимеризацию подразделяют на катионную или анионную. Катионная полимеризация акрилонитрила мало известна, так как обычные катионные катализаторы не активируют его. Анионные катализаторы довольно легко инициируют акрилонитрил. Такими катализаторами являются металлоорганические соединения (например, бутиллитий, реактив Гриньяра, натрий- и цинкалифатические соединения). Реакция протекает очень быстро при низких температурах (—30 °С). Основным преимуществом ионной полимеризации обычно является стереорегулярность получающихся полимеров, однако при полимеризации акрилонитрила это не подтвердилось. В производственной практике ионная полимеризация акрилонитрила не применяется. [c.23]

    Путем классификации и анализа огромного количества данных и фактов, накопленных более чем за 100 лет, механизмы обычных органических реакций в настоящее время четко установлены. Эти реакции обычно классифицируют как ионные, радикальные или молекулярные, хотя существует и более детальная классификация. Механизмы многих реакций с участием соединений непереходных металлов совершенно понятны, в то время как механизмы органических реакций с участием комплексов переходных металлов до сих пор не ясны. Без сомнения, эти реакции протекают путем образования о-связи металл — углерод, однако химические свойства этих связей остаются непонятными. Поэтому для более ясного понимания реакций, протекающих с использованием комплексов переходных металлов, вначале стоит проанализировать и сравнить их с реакциями реактивов Гриньяра, которые очень хорошо знакомы химикам-органикам. Известно, что первая стадия реакций Гриньяра состоит во взаимодействии металлического магния с ал-килгалогенидами с образованием алкилмагнийгалогени-дов, такшазываемых реактивов Гриньяра. В этой реакции нульвалентный магний окисляется до двухвалентного и происходит расщепление ковалентной связи углерод — галоген, следовательно, эту стадию можно рассматривать как окислительное присоединение алкилга-логенидов к металлическому магнию. Полученный таким способом реактив Гриньяра является источником карб-аниона и реагирует с различными электрофильными реагентами, например карбонильными соединениями или нитрилами. Эту стадию можно формально представить как реакцию внедрения ненасыщенной связи карбонильной группы по связи магний — углерод. В последнем процессе не изменяется степень окисления магния. Таким образом, реакцию Гриньяра можно представить [c.14]


Смотреть страницы где упоминается термин Гриньяра реактив механизм: [c.388]    [c.369]    [c.300]    [c.118]    [c.300]    [c.49]    [c.351]    [c.111]    [c.250]   
Методы элементоорганической химии (1963) -- [ c.93 , c.96 , c.190 ]

Методы элементоорганической химии Магний бериллий кальций стронций барий (1963) -- [ c.93 , c.96 , c.190 ]




ПОИСК





Смотрите так же термины и статьи:

Гриньяр

Гриньяра реактивы

Гриньяров реактив



© 2024 chem21.info Реклама на сайте