Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молибден определение методом ААС

    Определению молибдена роданидным методом не мешают ионы алюминия, кобальта, урана, тантала, натрия, калия, кремния, кальция, магния, титана, ванадия, хрома, марганца, никеля, цинка, мышьяка, серебра, олова, сурьмы и ртути. Соединения железа (III) и меди усиливают интенсивность окраски, вероятно, вследствие образования много-ядерных комплексов, содержащих молибден, железо (или медь) и роданид. Мешающее влияние вольфрама устраняют введением винной кислоты, препятствующей образованию роданидных комплексов вольфрама. [c.379]


    Окраска комплекса устойчива в течение нескольких часов по истечении 15 час. было замечено небольшое увеличение оптической плотности). Многие элементы (Fe, Zr, U(VI), Bi, Sn, r (VI), V и W) оказывают сильное мешающее влияние на измерение окраски молибденового комплекса. Меньше помехи за счет Мп(И), Ti, Ni, Pb, Al и некоторых других элементов. При проведении полной методики лишь Sn, Bi и W следуют вместе с молибденом и мешают определению. Метод проведен на искусственных смесях. Стандартное отклонение для 32 определений составляет в среднем 1,6%. [c.407]

    В предыдущих сообщениях [1—6] авторы для целей определения малых количеств молибдена и косвенного (по молибдену) определения еще меньших количеств фосфора и мышьяка разработали кинетические би-амперометрические методы определения - 1 нг молибдена [4] и, соответственно, 20 пг фосфора [6]. [c.188]

    ФОТОКОЛОРИМЕТРИЧЕСКОЕ КОСВЕННОЕ (ПО МОЛИБДЕНУ) ОПРЕДЕЛЕНИЕ НАНОГРАММОВЫХ КОЛИЧЕСТВ ФОСФОРА КИНЕТИЧЕСКИМ МЕТОДОМ [c.69]

    Чувствительность определения примесей в молибдене тремя методами (в % к Мо) [c.463]

    В табл. 4 приведены результаты определения азота в молибдене спектральным методом. [c.291]

    В большинстве публикаций приводятся данные по насыщению активности при определенных концентрациях металлов. В то же время эти сведения не однозначны относительно содержания металлов, при котором происходит насыщение активности. Оптимальными называются значения содержания металлов на оксиде алюминия, находящиеся в широких пределах - от 0,2 до 25% каждого. Соотношение кобальта (никеля) к молибдену от 0,25 До 5 [67]. Возрастание активности с увеличением содержания кобальта или никеля объясняется модификацией структуры Мо8, способствующей образованию активных центров. За пределами оптимума кобальт начинает блокировать активные центры. Естественно, количественно такая картина будет определяться многими факторами синтеза катализаторов и даже методом его оценки. [c.101]

    В полученном растворе определяют ванадий, никель, железо, кобальт и молибден. Методы количественного определения содержания этих металлов, за исключением ванадия, были описаны выше (см. стр. 104, 111, 115, 121). [c.128]

    Компактный молибден получают главным образом методом порошковой металлургии. Этот способ состоит из прессования порошка в заготовку и спекания заготовки. При прессовании порошка нз него получают заготовки — тела определенной формы, обычно — бруски (штабики). Штабики молибдена получают в стальных пресс-формах при давлении до 300 МПа. Спекание штабиков в атмосфере водорода проводят в две стадии. Первая из них — предварительное спекание — проводится при 1100—1200 С и имеет целью повысить прочность и электрическую проводимость штабиков. Вторая стадия — высокотемпературное спекание — осуществляется пропусканием электрического тока, постепенно нагревающего штабики до 2200—2400 °С. При этом получается компактный металл. Спеченные штабики поступают на механическую обработку — ковку, протяжку. [c.515]


    Работы, выполняемые полярографическим методом Определение рения в сплавах с молибденом [c.370]

    Метод определения рения а-фурилдиоксимом отличается большой чувствительностью и избирательностью. Молибден, вольфрам и ванадий, обычно сопутствующие рению в природных соединениях и сплавах, в соответствующих условиях не мешают определению малых количеств рения а-фурилдиоксимом. Соединение рения с а-фурилдиоксимом, полученное в присутствии хлорида олова (И) и ацетона (24— 26 об. %), при кислотности 0,6—1,0 и. НС поглощает при Хтах 530 нм е = 4,3 10". Раствор реагента в ацетоне поглощает в УФ-об-ласти спектра (220—330 пм) и не мешает измерению оптической плотности комплексного соединения рения. [c.196]

    Никель может быть определен данным методом в сталях, содержащих кобальт, ванадий, молибден вольфрам. [c.183]

    Менее точным, но весьма распространенным методом восстановления, является восстановление железа дихлоридом олова. Мешают определению ванадий, молибден и вольфрам, которые иногда содержатся в небольших количествах в железных рудах и также восстанавливаются дихлоридом о,иова. [c.403]

    Используют и раствор арсенита натрия для определения хромата в присутствии ванадатов, так как последние не восстанавливаются. Сильный восстановитель— раствор соли титана(III)—можно применять для определения железа и меди в смеси сначала железо (III) превращается в двухвалентное, а затем восстанавливается медь(II) до одновалентной. Существуют и методы титрования другими сильными восстановителями, например растворами солей хрома (II) или олова, хотя работа с такими растворами сопряжена с необходимостью защиты их от действия кислорода воздуха. Раствор хлорида олова (И) восстанавливает молибден (VI) до молибдена (V) и ва-надий(У) до ванадия(1П) так можно определить оба элемента при их совместном присутствии. [c.459]

    Одним из видов нанесения защитных покрытий на детали из высокотемпературных материалов служит метод окунания в расплав [1]. Такой метод используется для кратковременной защиты покрытий при горячей обработке давлением молибдена и ниобия. Для нанесения качественного покрытия необходимо определение оптимальных температур и состава расплава, при которых происходит удовлетворительное смачивание твердых металлов расплавом. Смачивание твердых молибдена и ниобия расплавами на основе алюминия исследовали на установке, позволяющей раздельный нагрев твердой и жидкой фаз [2]. Опыты проводили в среде гелия, температуру фиксировали платина — платинородиевой термопарой. В качестве объектов исследования использовали молибден и ниобий после электронно-лучевой плавки, алюминий чистоты 99,98% и порошки легирующих компонентов кремния, титана и хрома марки ч. д. а. Для экспериментов готовили навески одинаковой массы 500 мг. При достижении твердой подложкой температуры опыта навеска плавилась и соприкасалась с подложкой, время контакта при заданной температуре составляло 2 мин, по истечении которого каплю фотографировали аппаратом Зенит-С на [c.55]

    Анализ по отражению Р-частиц оказывается особенно эффективным при определении элементов, разделение которых обычными химическими методами сопряжено с большими трудностями (например, ниобий и тантал, молибден и вольфрам и др.). В этих случаях анализ по отражению дает значительный выигрыш во времени и в затрате труда на проведение анализа. [c.171]

    Рений в природных соединениях обычно сопутствует молибдену. Описанный метод может быть применен для определения рения в присутствии молибдена. Молибден в малых концентрациях не мешает определению рения. Для соотношений Re Мо, равных 1 1, 1 5, 1 lO 1 15, рений определяется количествено в интервале концентраций 6—30 мкг. [c.197]

    Последовательное титрование трехвалентного железа и шестивалентного молибдена раствором соли двухвалентного хрома или другого восстановителя может привести к удовлетворительным результатам только при их соизмеримых количествах. При определении небольших количеств молибдена в присутствии железа более целесообразно определять молибден по методу Клингера, Штенгеля и Коха [931]. Они определяли молибден в сталях, ферромолибдене, шлаках и рудах путем его восстановления при помощи металлического цинка в среде НС1. а затем довосстановления при помощи раствора СгСЬ и последующего потенциометрического титрования трехвалентного молибдена раствором К2СГ2О7. Первый скачок потенциала соответствует окончанию окисления избытка Or la, а второй — окончанию окисления трехвалентного молибдена. [c.200]

    Ласснер и Шарф [987] определяли молибден фотометрическим методом в форме его соединения в пятивалентном состоянии с комплексоном III. Интенсивность желтой окраски сравнительно невелика поэтому метод позволяет определять относительно большие количества молибдена. Закон Бера соблюдается для концентраций 2—50 мг Мо на 250 мл. Оптическую плотность растворов измеряют с синим светофильтром. Ошибка в среднем составляет 1—3 отн.%. Шествивалентный молибден восстанавливают сульфатом гидразина при кипячении слабосернокислых растворов в присутствии винной кислоты и избытка комплексона III. В кислых растворах желтое окрашивание устойчиво во времени, в щелочных — при стоянии быстро уменьшается, вероятно, вследствие окисления пятивалентного молибдена. Определению молибдена не мешают даже 500-кратные количества вольфрама, если раствор содержит достаточные количества винной кислоты. Кривые светопоглощения растворов соединения пятивалентного молибдена с комплексоном UI имеют максимум при 298 ммк. [c.237]


    Фильтрат и промывную жидкость после отделения кремния помещают в мерную колбу -емкостью 100—2о0 мл, доводят водой до метки, перемешивают и быстро отбирают пробы для определения ниобия фотоколориметри-ческим методом с арсеназо I [4]. Из основного раствора также быстро отбирают аликвотную часть в мерную колбу емкостью 100 мл, приливают 20%-ную винную кислоту (10 мл на 100 мл раств Ора) я определяют молибден колориметрическим методо.м роданидом аммония. [c.92]

    Другим важным экстрагентом является бензоин а-оксим, который осаждает вольфрам (VI) и молибден (VI). Образующиеся комплексы экстрагируют хлороформом [13,14]. Для полного выделения вольфрама экстракцию проводят несколько раз. Ванадий и хром также экстрагируются, но их можно замаскировать. Как и молибден, вольфрам экстрагируется из кислых растворов в присутствии восстановителей и роданида, но хуже, чем молибден. Этот метод используют для отделения вольфрама, предшествующего его гравиметрическому определению с помощью тетрафениларсоний-хлорида [15]. Вместо обычного восстановителя — хлорида олова (II)— применена ртуть, а комплекс экстрагируют раствором трибензиламина в хлороформе. Вольфрам реэкстрагируют слабощелочным раствором, содержащим пероксид водорода, для разрушения избытка роданида и окисления вольфрама до Ш . Метод позволяет отделять менее 50 мг вольфрама, но не рассчитан на отделение микросодержаний вольфрама. [c.235]

    Увеличение чувствительности в несколько раз (е 1,5-10 ) по сравнению с методом фосфорномолибденовой сини достигается в косвенном методе определения фосфора [84, 85], состоящем в следующем. Из 0,4 н. НС1 экстрагируют бутанолом фосфорномолибденовую кислоту. Экстракт отмывают от примеси молибденовой кислоты 0,4 н. соляной кислотой. Затем фосфорномолибденовую кислоту реэкстрагируют 0,1 п. раствором NaOH и в реэкстракте определяют молибден роданидным методом (см. стр. 255). В другом методе, основанном на том же принципе, фосфорномолибденовую кислоту экстрагируют смесью хлороформа с бутанолом и определяют молибден с помощью 2-амино-4-хлорбензолтиола (е = 9,7-10 ) [86]. [c.431]

    При определении газов в хроме и молибдене по методу вакуумплавления часто имеет место так называемая недостача по водороду, т. е. [c.284]

    На рис. 4—7 приведены примеры градуировочных графиков. В табл. 3—5 приведены данные, позволяющие оценить ошибку метода. В табл. 3 сравниваются результаты по определению кислорода в молибдене, полученные методами спектральным и вакуумплавления. [c.295]

    Определение кислорода в молибдене спектральным методом и методом вакуумплавленпя [c.295]

    Радикальным методом считается переработка отработанного катализатора с извлечением металлов. Отработанные катализаторы, содержащие кобальт, никель, молибден привлекали внимание как исходный материал для извлечения этих металлов. Учитывая определенный дефищп их и относительно высокую стоимость, бьши разработаны варианты технологии их извлечения. Однако при складывающейся ситуащш соотношения цен на соли этих металлов и стоимости их извлечения из отработанных катализаторов долгое время разработки не пол> чали широкого развития. [c.149]

    В работе [263] показано, что для экстракции металлов (перед их определением атомно-абсорбционной спектроскопией) лучше применять смесь 80 % бензола и 20 % толуола, нежели ксилол (в последнем при стоянии происходит выпадение твердого осадка). Здесь же обсуждены вопросы приготовления стандартов, автома--тической дозировки проб, загрязнения металлами из чужеродных продуктов (масел механизмов при нефтедобыче и транспортировке промывных вод и т. д.). Методом атомно-абсорбционной спектроскопии определялись ванадий, никель, медь, железо, молибден, кобальт. Выявлены различия в определении этим же методом концентрации никеля в виде никельорганических соединений в зависимости от лиганда. Форма существования никеля в нефтях и применение различных лигандов для его выделения из нефтей или концентрирования влияют на его определение [268]. [c.146]

    В полученном солянокислом растворе непосредственно определяют железо. Очень редко приходится иметь дело с мешающими элементами и устранять их влияние. К таким элементам относятся ванадий, молибден и вольфрам, которые иногда могут находиться в незначительном количестве в железной руде. При восстановлении железа двухлористьш оловом эти элементы также восстанавливаются до низших степеней окисления и затем титруются перманганатом. В случае их присутствия анализ усложняется и для определения железа приходится пользоваться другими методами или вводить ряд дополнительных операций, которые подробно рассматриваются в специальных курсах анализа. [c.382]

    Применение разнолигандных комплексов во многих случаях приводит к повышению селективности, контрастности реакций, улучшению экстракционных и других свойств. Приведем несколько примеров. Определение малых количеств тантала в присутствии больших количеств ниобия — очень трудная задача. Однако эта задача была успешно решена с применением экстракционно-фотометрического метода определения тантала в виде ионных ассоцнатов гекса фторид ноге комплекса тантала с основными красителями. Аналогичную трудность испытывали аналитики при определении малых количеств рения в присутствии больших количеств молибдена. Только применение экстракции с трифенилметановыми красителями дало возможность определять очень малые количества рения в молибдене или молибденовых рудах с довольно низким пределом обнаружения. Это же относится к определению осмия в присутствии других платиновых металлов, определению бора и других элементов. Введение второго реагента часто приводит к улучшению экстракционных свойств комплексов и снижению предела обнаружения. Так, дитизонат никеля очень плохо экстрагируется неводными растворителями. Для полной его экстракции тетрахлоридом углерода требуется примерно 24 ч. Если же ввести третий компонент — 1,10-фенантролин или 2,2 -дипиридил, то комплекс экстрагируется очень быстро, а предел обнаружения никеля снижается в пять раз. [c.299]

    Микротвердость бывших аустенитных участков можно увели-чить с помощью термической обработки, однако закалка белого чугуна нредставляет определенную трудность, сопровождается воз< никновением микротрещин и приводит к снижению стойкости при многократных ударных нагрузках. В связи с этим основным методом повышения твердости бывших аустенитных участков следует считать легирование белого чугуна элементами, способствующими переохлаждению аустенита и переводу его в мартенсит при обычных скоростях охлаждения отливок. Такими элементами являются хром, никель (при совместном присутствии), марганец, молибден и некоторые другие. [c.34]

    Для определения порога хладноломкости рекристаллизованного молибдена нельзя использовать структурный (фрактографический) метод, так как рекристаллизованный молибден разрушается лишь хрупко (вьш1е порога хладноломкости наблюдается пластическая деформация без образования поверхности разрушения). Поэтому для рекртсталлизованного молибдена за верхний порог хладноломкости принимается такая температура, при которой все образцы не разрушаются, а за нижний такая, при которой все образцы разрушаются. Интервалу перехода в хрупкое состояние соответствуют, очевидно, такие случаи, когда часть образцов разрушается, а часть не разрушается. [c.46]

    Мышьяк определяют, при отсутствии фосфора и германия, в виде синего комплексного соединения мышьяка с молибденом. Широко распространен также гипофосфитный метод определения в виде элементарного мышьяка. [c.262]


Библиография для Молибден определение методом ААС: [c.316]   
Смотреть страницы где упоминается термин Молибден определение методом ААС: [c.350]    [c.39]    [c.203]    [c.175]    [c.16]    [c.99]    [c.152]   
Аналитическая химия промышленных сточных вод (1984) -- [ c.23 , c.25 ]




ПОИСК





Смотрите так же термины и статьи:

Вайнштейн, Ю. И. Беляев, М. В. А х м а н о в а Методы спектрального определения кадмия, сурьмы, висмута, свинца и олова в вольфраме и молибдене

Вода питьевая. Метод определения содержания молибдена

Гравиметрические методы определения молибдена

Другие методы определения молибдена

Молибден методом

Молибден, определение оксихинолиновый метод

Молибден, определение пирогаллоловым методом

Молибден, определение роданидным методом

Определение молибдена (VI) экстракционно-фотометрическим методом

Определение молибдена в рудах по методу

Определение молибденита

Определение рения в молибденитах роданидным методом

Определение рения в сплавах молибден-рений и вольфрам-рений с предварительным выделением его хроматографическим методом

Определение свинца, кадмия, висмута, сурьмы и олова в молибдене методом осциллографической полярографии

Определение содержания молибдена в почвах фотометрическим методом с использованием цинк-дитиола

Определение содержания молибдена в растениях фотометрическим методом с использованием цинк-дитиола

Пероксидный метод определения молибдена

Сообщение 11. Теоретические основы использования амперометрии в кинетических методах определения молибдена и некоторых других элементов (обзор). В. П. Розенблюм, Шафран

Титриметрические методы определения молибдена

Фотоколориметрическое косвенное (по молибдену) определение нанограммовых количеств фосфора кинетическим методом Сообщение 4. И. Г. Шафран, М. В. Павлова, Т. Я. Шарапова

Фотометрические методы определения молибдена

Фотометрическое определение молибдена в сталях роданидным методом

Фотометрическое определение рения роданидным методом в молибден- и вольфрамсодержащих сплавах



© 2025 chem21.info Реклама на сайте