Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура кальция

    Установлено, что кристаллизационные и физико-химические свойства стекол и стеклокристаллических материалов изученных систем определяются положением ионов кремния и алюминия в структуре кальций-фосфатной матрицы. В изученных стеклах кремний выступает в роли стеклообразователя и встраивается в цепочку фосфатных тетраэдров в виде тетраэдра [8104]. При этом происходит перераспределение длины и прочности мостиковых связей в цепочке за счет разности электроотрицательностей ионов кремния и фосфора, что приводит к разупрочнению [c.24]


    Цеолиты очень хорошо удерживают, кроме воды, также другие полярные вещества. Непредельные углеводороды лучше удерживаются цеолитами, чем соответствующие им предельные. Этилен, например, лучше удерживается, чем этан. Размеры молекул этилена и этана почти одинаковы, близки также и физические свойства этих газов. Если же смесь, содержащую равные доли этапа и этилена, пропустить через колонну с синтетическим цеолитом типа А, содержащим в своей структуре кальций или натрий, то около 80% газа, вошедшего в норы кристаллов, будет приходиться на долю этилена. Цеолиты предпочтительно удерживают непредельные углеводороды (по сравнению с предельными) потому, что их молекулы содержат слабо связанные электроны, обусловливающие наличие некоторой полярности. [c.170]

    Скорость гидрирования зависит от структуры кальция и наличия примесей [61, 66, 67]. Сублимированный кальций более рыхлый — он реагирует быстрее, чем сплавленный металл. Примесь натрия в кальции сильно ускоряет гидрирование. Если электролитический кальций, содержащий 0,078% Na, при 240° С за 1 ч практически не поглощает водорода, то при содержании 0,9% Na в тех же условиях гидрирование проходит на 85—90%. Для большинства случаев применения гидрида кальция примесь NaH не является вредной. Можно добавлять к кальцию хлорид натрия, [c.92]

    Рассмотрим формирование структуры кальций-никель-фосфат-ного катализатора (КНФ) в процессе его получения [10]. [c.63]

    Количественно основная функция кальция (Са) состоит в его включении в структуру срединной пластинки клеточной стенки. Кальций, связанный с кислотными компонентами желеобразного пектина срединной пластинки, образует нерастворимую соль. Поэтому введение Са в клеточную стенку приводит к затвердеванию ее полужидкой структуры. Кальций играет также важную роль в регуляции избирательной проницаемости клеточной мембраны. При выращивании растений в среде с недостатком Са клеточные мембраны начинают протекать и утрачивают свою эффективность как барьеры, препятствующие свободной диффу  [c.209]

    Наряду с системами солевой вулканизации реальные резины должны содержать также системы ковалентной вулканизации, обеспечивающие образование необходимого количества прочных сшивок, определяющих сохранение формы изделия в процессе его эксплуатации, температурный ход эластичности и другие важные свойства. Гидроокись кальция не препятствует проведению серной вулканизации, однако она ускоряет ее, разрушает отдельные ингредиенты систем серной вулканизации и, по-видимому, оказывает существенное влияние на структуру образующейся сетки. Поэтому результаты, полученные при серной вулканизации без гидроокиси кальция, нельзя переносить на вулканизацию в ее присутствии и необходима разработка специальных систем серной вулканизации. [c.409]


    К каким осложнениям в домашнем хозяйстве приводит жесткость воды Вопросы 2 и 3 лабораторной работы были посвящены этой проблеме. Во-первых, жесткая вода мешает мылу проявлять свои моющие свойства. При смешивании мыла с мягкой водой оно легко в ней растворяется с образованием мутного раствора со слоем пены на поверхности. Если же мыло добавить к жесткой воде, ионы жесткости реагируют с мылом и образуют нерастворимые соединения (осадок), которые видны в виде хлопьев или клейкого налета (их можно заметить в ваннах и раковинах). Моющие свойства у такого осажденного мыла отсутствуют. Еще хуже то, что этот н шет оседает на одежде, коже и волосах. Структура веществ, образующихся в результате взаимодействия мыла и ионов кальция, показана на рис. 1.29. [c.85]

    Природные цеолиты — это минералы, представляющие собой водные алюмосиликаты кальция, натрия и других металлов. Цеолитам присущи кристаллическая структура и однородность размеров входных пор. Внутренняя структура цеолитов характеризуется наличием больших полостей, которые сообщаются между собой относительно малыми окнами. При удалении из цеолитов влаги эти полости образуют большую внутреннюю поверхность (рис. 16). Одинаковые диаметры входных окон позволяют проникать через них только молекулам определенного размера. [c.48]

    На рис. 14-10 показаны кристаллические структуры нескольких типов ионных кристаллов. Хлорид цезия кристаллизуется в структуру, в которой и катион, и анион имеют координационное число 8. Сульфид цинка образует кристаллы в одной из двух структур-так называемой структуре цинковой обманки и структуре вюртцита, в которых у катиона и аниона координационное число 4. Фторид кальция кристаллизуется в так называемой структуре флюорита, где катион имеет координационное число 8 (каждый ион кальция окружен восемью фторид-ионами), а анион-4. Одной из кристаллических форм диоксида титана является структура рутила, в которой координационные числа для катиона и аниона разны соответственно 6 и 3. [c.609]

    Хлористый кальций — бесцветное расплывающееся кристаллическое вещество с ромбической структурой кристаллов. [c.33]

    Отвлекаясь от вопроса о степени ионности связи и считая принадлежащими данному отрицательному иону все электроны, участвующие в образовании связи его с положительными ионами, можно представить схематически структуры электронных оболочек атома аргона, положительных ионов калия и кальция и отрицательных ионов хлора и серы (рис. 11). Сопоставление этих структур наглядно показывает аналогию л ежду ними. Все они содержат одинаковое число (18) электронов, которые одинаковым образом распределены в первой, второй и третьей оболочках К, L п М (2, 8 и 8 электронов) эти атомы и ионы в основном различаются по заряду ядра. Различие это приводит к тому, что при переходе от [c.60]

    Все эти особенности структуры силикатных кристаллов приводят к тому, что хотя ионы и содержатся в них, однако структура кристалла в отличие от типичных ионных кристаллов определяется здесь силикатным или алюмо-силикатным скелетом, связи в котором являются преимущественно ковалентными. Этим объясняются высокие температуры плавления силикатов и их нелетучесть. Это же приводит к свойственной некоторым силикатам способности легко обменивать ионы одних металлов на ионы других. Так, некоторые природные цеолиты или искусственно приготовляемые силикаты при взаимодействии с водными растворами солей могут частично обменивать содержащиеся в них катионы на катионы, имеющиеся в растворе. При этом обязательным условием является, чтобы размеры этих ионов не различались значительно. Так, ионы натрия Ыа" (радиус 1,05 А) легко обмениваются на ионы кальция Са + (радиус 0,95 А) в соотношении 2 1, причем сохраняется нейтральность кристалла в целом. Искусственные цеолиты используются также в качестве адсорбентов молекулярные сита, см. стр. 373)..  [c.135]

    Цеолиты представляют собой гидрированные алюмосиликаты кальция и натрия, реже — бария, калия и других металлов. Это кристаллические вещества, которые встречаются в природе в виде минералов (шабазит, нат-ролит, гейландит). Практическое применение получили в основном синтетические цеолиты, имеющие однородную кристаллическую тонкопористую структуру и одинаковые размеры пор, соизмеримые с размерами молекул поглощаемых веществ. Это свойство цеолитов позволяет с их помощью разделять и очищать вещества на [c.123]

    Карбонат кальция в результате процесса кристаллизации обладает свойствами, характерными для конденсационно-кристалли-зационных структур. Он способствует разрушению нефтяной эмульсии, однако не может сорбировать на своей поверхности больших количеств нефтепродуктов. Гидроокись магния относится к коагуляционному типу и по своей структуре сходна с такими гидроокисями, как А1(0Н)з, Ре(0Н)2 и Ре(ОН)з. Последние обладают большой активной поверхностью, способной сорбировать из воды значительное количество органических веществ, в связи с чем происходит одновременно осветление и удаление эмульгированных нефтепродуктов. [c.18]


    Очень сильное влияние на упорядочивающее воздействие поверхности глинистых минералов на воду оказывает состав обменных катионов. Это объясняется прежде всего прочностью связи катионов с поверхностью глинистой частицы, т. е. способностью их к диссоциации и участию в катионообменных реакциях. Степень поверхностной диссоциации (т. е. поверхностного растворения) глинистых минералов, замещенных одновалентными катионами, на один-два порядка выше степени диссоциации глин, обменный комплекс которых насыщен двухвалентными катионами. При прочих равных обстоятельствах степень поверхностной диссоциации зависит не только от плотности заряда обменного катиона, но и от взаимного влияния силовых полей поверхности частицы и катиона друг на друга при взаимодействии с водой. По мере увлажнения поверхности глин вокруг обменных катионов развиваются области с упорядоченными молекулами воды. Часть слабо связанных с поверхностью катионов удаляется от нее и может участвовать в трансляционном движении вместе с молекулами воды и растворенными в ней органическими и неорганическими веществами. Если в дисперсионной среде находятся крупные гидратированные катионы (Ма+, Mg2+), то они, вытеснив с поверхности глинистого минерала менее гидратированные катионы (К+, Са ), могут привести к увеличению гидратной оболочки глинистых частиц. В натриевом бентоните по мере возрастания содержания воды и уменьшения концентрацни суспензии отдельные слои глинистых частичек полностью диссоциируют. В бентоните, обменный комплекс которого насыщен магнием или кальцием, этого не произойдет, хотя ионный радиус этих катионов в гидратированном состоянии почти в два раза превышает радиус гидратированного натрия. Это, видимо, является следствием как изменения структуры воды и размеров гидратированных катионов вблизи поверхности в зависимости от их химического сродства, так и сжатия диффузной части двойного электрического слоя. [c.70]

    Приведенные рассуждения объясняют, почему валентность натрия должна быть равна 1. Натрий не может отдать больше одного электрона без нарушения устойчивой электронной структуры 2, 8. Атом хлора по той же причине не может принять больше 0Д1ЮГ0 электрона. В то же время кальций (электронная структура [c.159]

    Силикатные цементы синтезируют обжигом (при 1400—1600°С) до спекания тонкоизмельченной смеси известняка и богатой 5102 глины. При этом частично разрушаются связи 5 — О — 5 и А1 — О — А1, образуются относительно простые по структуре силикаты и алкминаты кальция и выделяется СОг. Тонко измельченный цементный рлинкер, будучи замешан сводой в тестообразную массу, постепенно твердеет. Этот переход (схватывание цемента) обусловливается сложными процессами гидратации и поликонденсации составных частей клинкера,, приводящими к образованию высокомолекулярных силикатов и алюминатов кальция. [c.483]

    Катализатор получают пропиткой керамического носителя соединениями никеля. Носитель содержит глину, модифицированную окислами кальция, магния и прокаленную при температуре 1000—1300° с. При этом глина спекается, сохраняя сравнительно развитую пористую структуру. Активность катализатора за период эксплуатации (200 ч) не изменялась. Выделения углерода и образования алюмоникелевой шпинели не наблюдалось [c.94]

    Выполнено сравнительное экспериментальное исследование удельных сопротивлений осадков, полученных на воронке с поршнем и на рамном фильтрпрессе с 4 рамами размером 0,2X0,2 м, с использованием водных суспензий окиси цинка, карбоната кальция и карбоната магния при концентрации 20— 150 кг-м- и разности давлений 35-10 —170-10 Па [186]. В частности найдено, что для осадка карбоната магния Вп составляет 0,71—0,72, а бф равно 0,64—0,69 соответственно те же величины для осадка окиси цинка находятся в пределах 0,61—0,69 и 0,77—0,81 (здесь Вп и бф — пористости осадка на фильтре с порщнем и на фильтрпрессе). Отсюда видно большое различие в пористости осадков, образованных на фильтре с поршнем и на фильтрпрессе, причем для осадка карбоната магния бп > Вф, а для осадка окиси цинка еп < Еф. В соответствии с сильной зависимостью удельного сопротивления осадка от пористости оказалось, что Гп отличается в несколько раз от Гф, причем для осадка карбоната магния Гп<Гф, а для осадка окиси цинка Гп>Гф (здесь и Гф — удельные сопротивления осадков, образованных на фильтре с поршнем и на фильтрпрессе). Однако отмечено, что значительное различие между г и Гф не может быть объяснено влиянием одной пористости, а также трением осадка о стенки фильтра с поршнем. Указано на различие в структуре осадков на фильтрах обоих типов. Высказано соображение о необходимости усовершенствования методики работы на фильтре с поршнем, без чего значения удельного сопротивления осадка, полученные на этом лабораторном приборе, не могут быть использованы для практических расчетов. Для ясности следует сказать, что рамный фильтрпресс с вертикальной поверхностью фильтрования представляет собой недостаточно подходящий объект для сравнения с фильтром с поршнем, поскольку в фильтрпрессе наблюдаются специфические явления, связанные со сползанием осадка и образование.м мостиков, которые затруднительно учесть в теоретическом сопоставлении. [c.182]

    Следует отметить, что присутствие в катализаторах окислов железа (РегОз), натрия (NaaO), кальция (СаО) нежелательно, так как приводит к ухудшению стабильности и избирательности катализатора. Порошкообразный алюмосиликатный катализатор характеризуется насыпным весом, структурой, механической прочностью, каталитической активностью, тер-мо- и плроустойчивостью, регенерируемсстью. [c.12]

    В структуре флуорита СаРа (рис. 1.88) 8 ионов фтора, расположенных в вершинах куба, находятся в окружении 14 ионов кальция, 8 из которых занимают вершины и 6 — центры граней большого куба. Каждый ион фтора окружен тетраэдрически четырьмя ионами кальция (на рис. 1.88 показан пунктиром один тетраэдр). В изображенной элементарной ячейке ионов кальция больше, чем ионов фтора. Однако все ионы фтора принадлежат только данной ячейке, поскольку они находятся внутри нее. Все ионы кальция, наоборот, принадлежат не только данной ячейке, но и другим, соседним. Ионы, находящиеся в вершинах куба, одновременно обслуживают 8 ячеек, а ионы, расположенные в центрах граней, обслуживают 2 соседние ячейки. Таким образом, на 8 ионов фтора приходится в среднем.  [c.150]

    Разумеется, понятия насыщенный и концентрированный не тождественны. Например, 35%-ный водный раствор КВг является концентрированным, но он ненасыщен, так как при 20° С в 100 г воды растворяется около 65,8 г КВг. Наоборот, насыщенный раствор сульфата кальция при 20° С на каждые 100 г воды содержит всего 0,2 г Са504 сказывается малая растворимость этого вещества раствор будет насыщенным, но весьма разбавленным. Так как насыщенные растворы различных веществ охватывают концентрации от ничтожно малых до весьма значительных, то они подобны лишь с формальной стороны. Их структура может быть самой разнообразной — от почти неискаженного строения чистого растворителя до структуры, близкой к кристаллической решетке растворенного вещества. [c.140]

    Из более сложных кристаллов рассмотрим только кальцит, СаСОз (рис. 37). Ионы СО , являющиеся структурной единицей кристалла, окружены 6 ионами кальция. Внутренняя структура самого иона СОз" отвечает плоскому правильному треугольнику, в центре которого находится углеродный атом и в вершинах — кислородные атомы. [c.130]

    Стеарат кальция (С17Нз5СОО)2Са — продукт мол. веса 607,0, с темп, размягч. 145—150° С имеет зольность 9—10%, почти не растворяется в воде. В готовом виде пока в СССР не выпускается. Получается омылением жирных кислот и жиров гидратом окиси кальция Са(0Н)2. Хорошо диспергируется в маслах при наличии кристаллизационной воды, образуя характерную структуру (см. рис. 12. 1, а). [c.687]

    Природные активированные алюмосиликатные катализаторы крекинга представляют собой главным образом монтмориллонито-вые глины, обработанные серной кислотой, сформованные и прокаленные. Применялись и другие природные алюмосиликаты — каолин, галлуазит. В процессе кислотной обработки из природного алюмосиликата удаляются кальций, натрий и калий, часть содержащихся в его структуре железа и алюминия. В катализаторах, полученных на основе различных глин, содержание алюминия (считая на АЬОз) составляет от 17,5 до 45%. Катализаторы этого типа обладают относительно низкой устойчивостью к действию высоких температур. Высокое содержание железа отрицательно влияет на их свойства, так как железо катализирует паразитную реакцию распада на углерод и водород. Антидетонационные свойства бензинов, получаемых при крекинге с катализаторами из природных алюмосиликатов, существенно ниже, чем при применении синтетических катализаторов. В настоящее время катализаторы на основе природных алюмосиликатов практически не применяют. [c.209]

    Цеолиты представляют собой кристаллические пористые алюмосиликаты, отличашциеся строго регулярной структурой пор. а качестве катионов в состав цеолитов входят натрий, калий, кальций и другие металлы [7]. Пористая структура кристаллов цеолита образована жестким трехмерным алюмосиликатным каркасам, состоящим из тетраэдров 5 02 л АЮ4 [ 8]. Отрицательиый заряд кислородных тетраэдров компенсируется катионами щелочных и целочноземельвых металлов, не связанных жестко со структурой и способных обмениваться на другие катионы, в связи с чем цеолиты являются прекрасными катионообменными веществами. [c.172]

    Последующая стадия процесса — созревание суперфосфата, т. е. образование и кристаллизация монокальцийфосфата, происходит медленно и заканчивается лишь на складе (дозревание) при вылеживании суперфосфата в течение 6—25 сут. Малая скорость этой стадии объясняется замедленной диффузией фосфорной кислоты через образовавшуюся корку монокальцийфосфата, покрывающую зерна апатита, и крайне медленной кристаллизацией новой твердой фазы Са(Н2Р04)2-Н20. Оптимальный режим в реакционной камере определяется не только кинетикой реакций и диффузией кислот, ио и структурой образовавшихся кристаллов сульфата кальция, которая влияет на суммарную скорость процесса и качество суперфосфата. Ускорить диффузионные процессы и реакции (а) и (б) можно повышением начальной концентрации серной кислоты до онтпмалыюй и температуры. [c.146]

    В СВЯЗИ С ЭТИМИ трудностями В последнее время стали применять молекулярные сита, что дало возможность поставить на более высокий уровень получение чистых и особо чистых веществ. Молекулярные сита представляют собой пористые кристаллы цеолитов. Цеолиты — это водные алюмосиликаты кальция, натрия и других металлов. Известен целый ряд природных цеолитов (шабазит, мор-денит, гмелинит и др.), в структуре кристаллов которых имеются полости, сообщающиеся друг с другом через относительно узкие окна (рис. 123). Число таких полостей в кристалле обезвоженного цеолита очень велико. В цеолитах некоторых типов общий объем полостей достигает около половины всего объема кристалла. Внутренняя поверхность этих полостей составляет несколько сот квадратных метров в 1 г цеолита, благодаря чему цеолиты служат хорошими адсорбентами. Размер этих окон очень мал и примерно соответствует [c.309]

    Важнейшие соединения этого класса — алюмосиликаты (например, нефелин Na [AlSi04]). От алюмосиликатов следует отличать силикаты алюминия, в которых алюминий не входит в каркас и имеет обычно октаэдрическую координацию, например гранат АЬСаз [3104]з. Структура силикатов определяет их свойства. Слоистые силикаты — слюды легко раскалываются на тонкие пластины, т. е. обладают спайностью. Каркасные алюмосиликаты с широкими каналами в структуре называются цеолитами и служат в качестве молекулярного сита, пропускающего молекулы только определенного размера. Кроме того, они играют роль ионообменников — легко обменивают содержаш ийся в них ион натрия на кальций и магний. В этом качестве они прекрасное средство уменьшения жесткости воды. При истощении обменной способности цеолита он может быть регенерирован обработкой 5—10%-ным раствором поваренной соли. [c.139]

    Размвры молекул, которые могут быть адсорбированы цеолитами, зависят от его катионов. Цеолит, в котором. 40—70% ионов натрия замещено ионами кальция, поглощает молекулы н-алкана поперечником менее 4,9 А и не поглощает изопарафины и циклические углеводороды. В яависимости от структуры и, сле-довательио, типа цеолиты обозначают большими буквами латинского алфавита А, X, У, Ь и др. Перед каждой буквой ставят химический символ катиона, преобладающего в структуре цеолита и компенсирующего отрицательный - заряд алюмокислородного тетраэдра. Например, цеолит А, в структуре которого преобладает натрий, обозначают как МаА цеолит типа X с преобладанием кальция — СаХ. [c.240]

    Структура -двухкальциевого силиката (ортосиликата кальция a25iO4), приведенная на рис. IV.2, образована островными тетраэдрами [Si04] , связь между которыми осуществляется через ионы Са + (на рис, IV.2 обозначены точками). Половина ионов кальция расположена над и под тетраэдрами [Si04] , другие — между тетраэдрами. [c.101]

    В трехкальциевом силикате a2[Si04]( a0) присутствие дополнительной молекулы СаО приводит к значительному усложнению кристаллической структуры (рис. 1V.3). Колонки кремнекис-лородпых тетраэдров б, соединенных через ионы кальция, разделены стенками из ионов кислорода а, не входящих в кремнекислородные тетраэдры, а окруженных ионами кальция. Такая структура оказывается значительно более химически активной. [c.101]


Смотреть страницы где упоминается термин Структура кальция: [c.94]    [c.412]    [c.419]    [c.592]    [c.115]    [c.118]    [c.452]    [c.36]    [c.21]    [c.40]    [c.276]    [c.284]    [c.367]    [c.58]    [c.42]    [c.95]    [c.102]   
Физическая химия силикатов (1962) -- [ c.25 ]




ПОИСК





Смотрите так же термины и статьи:

Кальцит, структура



© 2024 chem21.info Реклама на сайте