Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кальций биологическая функция

    Все эти примеры служат иллюстрацией пассивного, но стереоселективного переноса, когда органические модельные системы осуществляют асимметричное узнавание. Однако можно провести аналогию между этими результатами и процессом опосредованного переноса через биологические мембраны. Все липидные мембраны практически непроницаемы для внутриклеточных белков и высокозаряженных органических и неорганических ионов, находящихся с обеих сторон мембраны. Диффузия Na+ через клеточную мембрану из клетки и К+ в клетку происходит в направлении отрицательного градиента химического потенциала и называется пассивным переносом. Пассивный перенос ионов через мембраны может быть вызван ионофорами [см. разд. 5.1.3]. К счастью, концентрации катионов по обе стороны мембраны различные, и такое состояние поддерживается активным переносом, который зависит от метаболической энергии. Механизм этого процесса известен под названием натриевый насос, функция которого сводится к поддержанию высокой внутриклеточной концентрации К+ и низкой концентрации Na+. Кальций, по-внднмому, также активно выводится из клеток. В этих случаях энергия для переноса обеспечивается за счет гидролиза АТР. Однако диффузия сахаров и аминокислот к важнейшим клеточным объектам — пример простого опосредованного пассивного переноса. [c.282]


    Биохимические функции. Кальцитонин является антагонистом паратгормона и ингибирует резорбцию костной ткани. Его биологическое действие реализуется по мембрано-опосредованному механизму и вызывает уменьшение концентрации кальция в плазме крови. КТ действует не только на минеральную составляющую костей, но и на их органический матрикс. Это проявляется в ингибировании костного коллагена, инактивации кислой фосфатазы и Р-глюкуронидазы, а также активации щелочной фосфатазы. Кальцитонин способствует транспорту фосфора из крови в костную ткань для образования гидроксиаппатита в последней, а также оказывает выраженное действие на почки, подавляя канальциевую реабсорбцию кальция и фосфора. Биологическое действие гормонов паращитовидной железы проявляется на фоне действия на обмен кальция и фосфора таких гормонов, как глюкокортикоиды и соматотропин. [c.154]

    Кальций важен для всех форм жизни. Его биологические функции разнообразны. Кальций входит в состав опорных и защитных частей организмов, его соединения образуют основу твердой части зубной ткани, скорлупы яйца. Ионы кальция содержатся в ряде белков, оказывают существенное влияние на работу ферментных си- [c.201]

    Для нормального роста и вьшолнения биологических функций человеку и животным кроме витаминов необходим также целый ряд неорганических элементов. Эти элементы можно разделить на два класса макроэлементы и микроэлементы. Макроэлементы, к которым относятся кальций, магний, натрий, калий, фосфор, сера и хлор, требуются организму в относительно больших количествах (порядка нескольких граммов в сутки). Часто они выполняют более чем одну функцию. Например, кальций служит структурным компонентом неорганического вещества костей гидроксиапатита, состав которого можно приблизительно описать формулой [Саз (РО гЗз. Вместе [c.294]

    Ионы металлов в белках и ферментах выполняют ряд каталитических и структурных функций. Их роль в биокатализе подтверждается тем, что примерно треть известных в биохимии ферментов активна только в присутствии ионов металлов [1]. О структурной роли ионов металлов в биологических системах свидетельствует существование многочисленных ферментов, в которых ионы металла непосредственно не участвуют в каталитическом акте, но оказываются необходимыми для выполнения этими ферментами их биохимической функции. Таким образом, ионы металлов в белках и ферментах можно условно подразделить на два класса химические и структурные металлы. Химические металлы — те, которые принимают непосредственное участие в биохимической реакции, например в окислительно-восстановительных реакциях пер-оксидаз и ферредоксинов или в связывании кислорода гемоглобином. Структурные металлы либо стабилизируют конформацию фермента, необходимую для выполнения его биологической функции, как, например, кальций(П) в термолизине, либо косвенно промотируют катализ, обеспечивая необходимую ориентацию субстратов или каталитических групп белка, например магний(И) в фосфоглюкомутазе. [c.11]


    Макроэлементами в живом веществе являются кислород, водород, углерод, азот, кальций, сера, фосфор, калий, магний, железо, кремний, натрий, хлор и алюминий. Их роль в живых организмах различна. Первые десять элементов (их названия выделены в перечне полужирным шрифтом) жизненно необходимы для животных и для растений. Натрий и хлор, безусловно, нужны всем животным и полезны для некоторых видов растений. Биологические функции кремния и алюминия изучены недостаточно. Все макроэлементы живого вещества располагаются в верхней части периодической системы. Большинство из них входит в состав второго и третьего периодов. [c.142]

    Применение КФ-91 при обезвоживании избыточного активного ила и осадков биологической очистки промстоков ЦБК позволило исключить токсичный коагулянт - хлорное железо, а также гидроксид кальция. Коагулирующую функцию в этих случаях выполняет сам катионный флокулянт. Все это значительно упрощает технологию процесса обезвоживания осадков. [c.31]

    Жидкий мембранный электрод с кальциевой функцией. Ионы кальция играют большую роль в важных физиологических процессах живых организмов. Проблема измерения активности зтих ионов в биологических жидкостях была решена после разработки ионселективного жидкого мембранного электрода с кальциевой функцией. Устройство одного из таких электродов показано на рис. 24.5. Нижний конец открытой стеклянной трубки затянут целлюлозной пленкой, проницаемой для всех ионов и служащей для удержания жидкой мембраны. Последняя представляет [c.475]

    Биологическое действие. Ретинол действует подобно гормонам, проникающим в клетку, — связывается с ядерными белками и регулирует экспрессию определенных генов. Он необходим для осуществления нормальной репродуктивной функции. Ретиналь участвует в акте зрения. 11-/(ис-ретиналь связан с белком опсином и образует родопсин. На свету родопсин диссоциирует, и г<мс-ретиналь переходит в транс-ретналъ. Реакция сопровождается конформационными изменениями мембран палочек и открытием кальциевых каналов. Быстрый вход ионов кальция инициирует нервный импульс, который передается в зрительный анализатор. Для повторного восприятия (т.е. в темноте) транс-ретиналъ восстанавливается алкогольдегидрогеназой в транс-ретинол (здесь возможны потери витамина А). Транс-ретинол изомеризуется в <мс-ретинол (здесь возможно восполнение витамина А). Z/мс-ретинол окисляется в г<мс-ретиналь, который, соединяясь с опсином, образует родопсин. Система свето-ощущения готова к восприятию следующего кванта света. Ретиноевая кислота участвует в синтезе гликопротеинов, усиливает рост и дифференцировку тканей. Ретиноиды обладают антиопухолевой активностью и ослабляют действие канцерогенов. Р-Каротин — антиоксидант и способен обезвреживать пероксидные свободные радикалы (ROO ) в тканях с низким парциальным давлением кислорода. [c.333]

    Благодаря высокой гидрофильности, особенно в связи с относительно небольшим размером молекул и значительной концентрацией в сыворотке, альбумины играют важную роль в поддержании онкотического давления крови. Известно, что концентрация альбуминов в сыворотке ниже 30 г/л вызывает значительные изменения онкотического давления крови, что приводит к возникновению отеков. Альбумины выполняют важную функцию транспорта многих биологически активных веществ (в частности, гормонов). Они способны связываться с холестерином, желчными пигментами. Значительная часть кальция в сыворотке крови также связана с альбуминами. [c.570]

    Из щелочно-земельных металлов в биологических системах повсеместно распространены магний и кальций. Многие эфиры и ангидриды фосфорной кислоты функционируют в виде магниевых солей. Концентрация ионов магния в клетках имеет исключительно важное значение для поддержания целостности и функционирования рибосом, т.е. для синтеза белков. Кроме того, магний входит в состав хлорофилла — основного пигмента зеленых растений, непосредственно поглощающего кванты видимого света для использования их энергии при фотосинтезе. Ионы кальция принимают участие в регуляции ряда важных клеточных процессов, в том числе мышечного сокращения и других двигательных функций. Кроме того, нерастворимые соли кальция участвуют в формировании опорных структур фосфат кальция — в формировании костей, карбонат кальция — в образовании раковин моллюсков. [c.65]

    Аккумулятивная функция Сущность этой функции заключается в накоплении в форме ГВ важнейших элементов питания живых организмов, органических соединений, несущих энергетические запасы или непосредственно необходимых и усваиваемых микроорганизмами или растениями, а также элементов, не участвующих в биологических процессах Такое накопление происходит не только в почвах, но также в природных водах, донных отложениях, где ГВ служат источниками энергии и питания для биоты Именно в форме ГВ в почвах накапливается до 90% всего азота, половина и более фосфора, серы [451] В этой же форме аккумулируются и сохраняются длительное время калий, кальций, магний, железо и практически все необходимые микроорганизмам микроэлементы В составе ГВ идентифицируются такие элементы, как Н , РЬ, N1, 2п, Си и Аи, которые они очень эффективно сорбируют [c.350]


    У человека и высщих животных имеется ряд специальных органов (эндокринных желез или, как их раньше называли, желез внутренней секреции ), которые вырабатывают и направляют в кровь или лимфу особые вещества, являющиеся внутренними химическими регуляторами многочисленных биологических процессов, происходящих в организме. У человека различные гормоны вырабатываются щитовидной железой (тироксин и родственные йодированные аминокислоты), па-ращитовидными железами (особый гормон, регулирующий обмен кальция и фосфора), надпочечниками (адреналин, стероидные гормоны, регулирующие либо обмен углеводов, либо содержание неорганических ионов в крови), поджелудочной железой (инсулин, глюкагон), гипофизом (большое число пептидных и белковых гормонов, регулирующих ряд функций), семенниками и яичниками (половые гормоны) некоторые гормоны образуются в кишечнике и желудке. [c.81]

    Из 102 элементов периодической системы в живых организмах обнаружено не менее 60. Многие из них относятся к металлам и встречаются в живых клетках в виде разнообразных комплексных соединений. Уже давно стало ясно, что металлы, даже встречающиеся в живых тканях в крайне низких концентрациях (так называемые микроэлементы), и их комплексы — это не случайные примеси, а биологически важные компоненты клетки. Множество патологических нарушений, связанных с недостаточностью в клетке железа, меди, цинка, марганца, молибдена, кобальта, не говоря уже о более распространенных в живых тканях металлах кальции, магнии и др., имеют большое значение для биохимии животных и растений, а также для прикладных областей. Исследования биохимических процессов, в которых участвуют ионы металлов, представляют сравнительно новую, но уже вполне определившуюся и быстро развивающуюся область науки, называемую бионеорганической химией. К ней относится также и моделирование структурных и функциональных параметров природных комплексов металлов. Несмотря на значительные различия выполняемых физиологических функций, типов катализируемых реакций и структур реакционных центров, ферменты, являющиеся предметом исследования в бионеорганической химии, объединяет одна особенность— участие ионов металлов или в самом каталитическом акте, или в поддержании третичной или четвертичной структуры белка, необходимой для оптимального функционирования фермента. Это определяет известную общность подходов к изучению ферментов указанной группы и выбор некоторых методов исследования, заимствованных, с одной стороны, из арсенала энзимологии, а с другой - из химии координационных соединений. [c.5]

    Биологическая роль макроэлементов. Кальций в организме человека составляет около 40 % общего количества всех минеральных веществ. Он входит в состав костей и зубов, придавая им прочность, депонируется в мембранах ретикулума скелетных мышц, участвует в запуске сокращения мышц, передаче нервных импульсов, регуляции проницаемости мембран клеток, в процессах свертывания крови, активирует многие обменные процессы, в том числе распад АТФ, способствует усвоению организмом железа и витамина В,2- Недостаточное поступление кальция в ткани организма приводит к выходу его из костей, что вызывает снижение их прочности (остеопороз), а также нарушение функции нервной системы, кровообращения, в том числе и мышечной деятельности. [c.70]

    Важное биологическое значение имеют и некоторые щелочные и щелочноземельные элементы. По сравнению с переходными элементами они связываются менее прочно, и поэтому более легко и свободно перемещаются. Функция натрия и калия в клеточных мембранах связана с нервными импульсами. Магний и кальций участвуют в процессе превращения химической энергии в работу мышц. Определенную функцию в биохимических процессах выполняют и некоторые неметаллы [51]. [c.601]

    Во многих областях находит практическое применение кальциевый ионоселективный электрод. Помимо традиционного анализа воды, различных растворов и т. д. большое практическое значение кальциевый электрод имеет в медико-биологических исследованиях, клинической медицине и т. д., поскольку концентрация (активность) ионов кальция влияет на многие процессы жизнедеятельности и физиологические процессы (нервная деятельность, функция ферментов и т.д.). Известен мембранный ионоселективный электрод, позволяющий определять жесткость воды, так как он имеет примерно одинаковую чувствительность на оба иона (кальций и магний). [c.213]

    Еще 50 лет назад ученые Осборн и Мендель доказали, что в белке пшеницы мало лизина. В настоящее время установлено, что лизин в организме является не только структурным элементом белка, но и въшолняет ряд важных биохимических функций — является предшественником карнитина и оксилизина, способствует транспорту кальция и стронция в клетки и др. В настоящее время во многих странах препарат лизина добавляют к хлебу для повышения его биологической ценности, а также для улучшения внешнего вида. Доказано, что лизин улучшает аппетит, способствует секреции пищеварительных ферментов, предотвращает кариес зубов у детей. [c.159]

    Другая сторона вопроса заключается в малой (относительно) прочности химических фрагментов клеток, извлекаемых из нее после разрушения клеточной оболочки. В этом нет ничего удивительного структуры динамические по своему существу вовсе и не должны быть прочными в статических условиях. Субклеточные структуры — митохондрии — самообновляются за короткий срок, составляющий приблизительно 10 суток. Высшие структуры белков (четвертичная, третичная) разрушаются легче, чем первичная цепь распад белковой части ферментов типа металлопротеидов совершается легче, чем разрушение гема, и т. п. Возможно, что это связано с их функциями, однако несомненно, что на всех уровнях развития биологические структуры не являются статическими. Вопрос этот сложен, но один из его аспектов сейчас более или менее ясен. Дело в том, что динамические структуры — детище минимум двух противоположных процессов —и выключение одного из них приводит к разрушению и самой структуры. Старая истина о необходимости упражнений (т. е. нагрузок) для поддержания жизнедеятельности любого органа выражает именно эту закономерность. Успехи космической медицины недавно принесли очень яркую иллюстрацию того же правила. Снятие гравитационной нагрузки вызывает вымывание кальция из организма, т. е. процесс постепенного рассасывания костяка даже эта, казалось бы столь прочная конструкция, в действительности является динамической структурой, связанной с регулированием положения организма в гравитационном поле. Динамические структуры не обязательно связаны с регулированием. Фонтан несомненно представляет собой динамическую структуру и его форма зависит от соотношения сил давления в струе воды и гравитационного поля, однако форма в этом случае не управляет потоком. Структура не имеет обратных связей со средой и не является аналогом клетки. Пламя костра в большей степени напоминает о том, что характерно для жизни и недаром еще Гераклит утверждал, что жизнь есть вечно живой огонь. Пламя создает диффузионный поток в окружающей среде, поток усиливает горение, но слишком энергичное вторжение масс холодного воздуха задерживает горение, т. е. здесь налицо признаки обратной связи, а следовательно, и авторегулирования. Для формирования устойчивой структуры и аппарата регулирования важно, чтобы возникающая динамическая структура могла влиять на потоки, ее порождающие. Статистическая интерпретация этого утверждения связана с допущением, что функции распределения [c.173]

    Ионы кальция, магния, калия и натрия регулируют многие биологические процессы они влияют на функции ферментов и играют роль в передаче нервного возбуждения. Между ними наблюдается антагонизм эффект избыточного количества калия подавляется увеличением концентрации натрия. [c.19]

    Биологическое действие. Витамины группы D (кальциферолы) регулируют обмен кальция и фосфора в организме, поддерживая их постоянный уровень в крови с участием паратгормона и кальцитонина, усиливают их всасывание в тонком кишечнике и поступление в кровь, а также выход из костей и почек (рис. 43). Кальциферолы участвуют и в регуляции усвоения лимонной кислоты, что имеет отношение к аэробному энергообразованию, функции щитовидной и паращитовидной желез, сердечно-сосудистой и иммунной систем организма. Регулируя обмен кальция, они влияют на процессы сокращения мышц, передачу нервных импульсов и многие другие Са -зависимые процессы. [c.110]

    Первичное поступление кальция и магния в биологические циклы связано с выщелачиванием силикатных изверженных пород и циклом кремния в биологически опосредованных процессах. Выщелачивание обусловливает попутное поступление в водную фазу микроэлементов. Цикл кремния в фанерозое обусловлен его использованием как скелетного материала диатомовыми, радиоляриями, губками. В результате кремний ведет себя в океане как биогенный элемент, и это связано с появлением скелетной функции у эукариот. [c.15]

    Особенно важные функции выполняют в биологических системах ионы железа, меди, цинка, магния, кобальта, кальция, молибдена, марганца среди микроэлементов можно обнаружить также олово, барий, золото и другие, роль которых исследована в меньшей степени. Около двух сотен ферментов для проявления своей активности так или иначе нуждаются в металлах и относятся к группе так называемых металлоэнзимов. В. 3. Горкин, несколько модифицировав классификацию Брея и Харрапа, делит металлоэнзимы на три группы истинные металло-энзимы, для которых характерна прочная связь с металлом металлоферментные комплексы, в которых апофер-мент и металл соединены лабильно и такие металлоэнзимы, которые нельзя с уверенностью отнести к одной из названных групп. [c.181]

    Исходный витамин D3 является регулятором образования гидроксилиро-ванной формы 25-(ОН) D3, ингибируя активность фермента 1-а-гидроксила-зы. Как уже было отмечено, биологические функции витамина D в основном связаны с действием его метаболитов. Физиологические концентрации кальция в крови поддерживаются системой, составной частью которой являются гидроксилированные формы D3. Идентифицирован механизм активации щелочной фосфатазы и кальций-зависимой АТФ-азы посредством метаболита витамина D3, а именно 1,25-(ОН)2 D3. Этот метаболит, локализованный в ядрах, принимает участие в регуляции генной активности. Гидроксилированные формы витамина D3 способствуют минерализации тканей, а также нормальному функционированию паращитовидных желез. [c.99]

    Впервые на важную функцию кальция как внутриклеточного регулятора указали результаты классических опытов английского физиолога С. Рингера, показавшие, что механическая активность сердца резко тормозится в условиях, когда кальций удаляют из внешней среды. С момента этого открытия прошло уже 100 лет, однако интерес естествоиспытателей к Са + не только не ослабевает, но растет год от года. С 1981 г. выходит в свет специальный международный журнал Клеточный кальций — периодическое -научное издание, целиком посвященное биологической функции отдельного иона. Почему, несмотря на многообразие кальцийзависимых процессов в организмах, оказалось возможным объединение статей в одном журнале Можно задать и более общий вопрос исходя из каких структурных свойств именно кальций в ходе эволюции живой материи был выбран Природой в качестве посредника и регулятора самых различных функций и метаболических реакций клеток В ходе последующего изложения мы постараемся дать ответ на эти вопросы. [c.7]

    Витамины О выполняют функции коэнзимов, работают в организме самостоятельно имеется в виду — в несвязанной форме. Основную свою функцию витамины О выполняют в биологически активной форме — в виде дигидроксипроизводных, которые ответственны за транспорт ионов кальция (схема 10.1.6). [c.272]

    Хорошо известно, что ионы кальция поступают в цитоплазму в ответ на нервную стимуляцию и что именно они вызывают различные ответные реакции в организме, такие, например, как мышечное сокращение. Весьма вероятно, что в результате присоединения ионов Са- к специфическим центрам связывания (как это имеет место, например, в каль-ций-связывающем белке карпа) в молекуле происходят конформационные изменения, инициирующие биологические ответные реакции. Кальций-связывающий белок содержит интересную систему внутренних полярных групп, связанных между собой специфическим образом с помощью водородных связей (рис. 4-5, ). Присоединение ионов кальция может вызывать перестройку этих внутренних связей (гл. 2, разд. Б.7) и изменять тем самым характер взаимодействия этого белка (функция которого точно не известна) с другим белком (ср., например, с действием тропонина С, разд. Е.1). В других кальций-связывающих центрах в белках содержатся остатки у-карбоксиглутаминовой кислоты, способной образовывать хелатные комплексы (дополнение 10-Г). [c.270]

    Более полная информация о механизме транспорта Са + получена в ходе экспериментов по реконструкции высокоочищен-ная АТРаза успешно встроена в искусственные липидные везикулы, которые затем активно захватывают ионы кальция. В данном случае здесь, как и во всех экспериментах по реконструкции, главная цель состоит в воспроизведении биологических условий путем использования биохимически охарактеризованных компонентов и, следовательно, постепенного воссоздания молекулярного процесса. Исключая и добавляя отдельные части биологической системы, стало возможным идентифицировать компоненты биологической мембраны, обусловливающие данную функцию. Ракер и др. [10] показали, что протеолипид, ассоциированный с белковой молекулой 100 ООО), является необходимым участником ионного транспорта, но не гидролиза АТР,, [c.179]

    Каждая клетка состоит из огромного числа атомов и молекул. Попробуем разобраться, насколько они универсальны и какие функции выполняют в клетках Оказалось, что из периодической системы элементов всего лишь шесть биоэлементов используются для построения подавляющего числа биологически значимых молекул углерод С, ьшслород О, водород Н, сера 8, азот N и фосфор Р. Еще 16 микроэлементов присутствуют в клетках в различных количествах и соотношениях. К ним относятся железо Ре, медь Си, цинк Zn, марганец Мп, кобальт Со, иод I, молибден Мо, ванадий V, никель N1, хром Сг, фтор Р, селен 8е, кремний 81, олово 8п, бор В, мышьяк Аз и пять ионов натрий Na , калий К , магний Mg , кальций Са " , хлор С1 . Каков бы ни был принцип отбора атомов для процессов жизнедеятельности, он не связан с их распространенностью в природе. Например, из галогенов только хлор и иод выбраны природой, хотя фтор и бром обладают не меньшей доступностью. По-видимому, в основу отбора положен принцип пригодности и целесообразности. Например, шесть основных биоэлементов имеют набор свойств, достаточный для построения почти всех необходимых для клетки молекул. [c.6]

    Для определения свободной концентрации лиганда в систе мах В, 23, А используются и другие экспериментальные методы Например, если вспомогательная центральная группа 58 вое станавливается обратимо на капельном ртутном электроде при более положительном потенциале, чем требуется для восстановления В, то свободную концентрацию лиганда можно получить полярографически при условии, что потенциал полуволны системы А был определен заранее как функция от а (см. гл. 8, разд. 3, В). Значение а может быть найдено также из измерений растворимости труднорастворимого комплекса 23Ас в растворе, содержащем В, при условии, что известны значения произведения растворимости 23Ас и константы устойчивости 93А (см. гл. 9, разд. 3, А). Значения с(с>0) и, следовательно, а можно определить спектрофотометрически, если ЙАс является единственной формой, которая заметно поглощает при используемой длине волны (см. гл. 13, разд. 1,Г). Аналогично использовался биологический кинетический метод (см, гл. 14, разд. 1,А) для определения концентрации свободных ионов кальция при исследовании цитратных комплексов магния и стронция [27]. [c.86]

    Основная функция витамина О — регуляция транспорта кальция и фосфатов в клетках слизистой оболочки тонкого кишечника и костной ткани. Этот процесс обеспечивается усилением биосинтеза транспортных белков — переносчиков Са. Предполагают, что витамин О и его биологически активный метабо 1ит 1,25-диоксикальци-ферол вступают в контакт с ядерным репрессором н дерепрессируия гены, ответственные за биосинтез белка-переносчика. [c.152]

    Магний и кальций в живой клетке. Магний и кальций относятся к числу биогенных макроэлементов. Физиологические функции катионов Mg + и Са + основаны на комплексообразова-нии с разнообразными биолигандами. Средние по прочности и лабильные координационные связи позволяют катионам Mg2+ и Са + изменять пространственйое расположение О- и М-донорных групп биологических лигандов и тем самым переводить эти вещества в состояние, обеспечивающее протекание важнейших биохимических процессов. Так активируются и дезактивируются многие ферменты. [c.301]

    Новые, весьма важные данные о физиологической роли двухвалентных катионов получены при изучении функций рибосом. Установлено, что структурная организация рибосом, от которой зависит их физиологическая активность, в свою очередь зависит от концентрации ионов магния. Рибосомы содержат значительные количества магния (до 0,3 мкмоль1г сухого веса). При недостаточном содержании магния рибосомы распадаются на так называемые субъединицы, что сопровождается значительной потерей их биологической активности. Значительная роль в сохранении структуры рибосом принадлежит также иону кальция. Влияние, аналогичное магнию, на способность рибосом синтезировать белок оказывает кобальт (Вебстер и Уитман). [c.426]

    Магний. В организме взрослого человека содержится около 19 г магния (59 % в костной ткани, дентите и эмали зубов). Ежесуточное потребление магния 0,7 г. Содержание магния в некоторых продуктах питания приведено в табл. 4.4. Ион М +, так же как и К+, является внутриклеточным катионом. В биологических жидкостях и тканях организма магний находится как в виде гидратированного иона, так и в связанном с белками состоянии. Вследствие меньшего, чем у иона Са , ионного радиуса и большей энергии ионизации ион магния в сравнении с ионом Са + образует более прочные связи с органическими лигандами и поэтому является более распространенным активатором ферментов. Магний стабилизирует ДНК, катализирует транскрипцию РНК, участвует в образовании активных форм АТФ и АМФ в виде комплексов MgATф2 , М АМФ , которые выполняют роль донора фосфатной группы во многих ферментативных реакциях. В отличие от большего по размеру иона кальция (координационные числа 6,7,8) ион магния образует шестикоординационные соединения регулярной структуры, которые играют огромную роль в жизнедеятельности растительных и животных организмов. Так, ион магния является ком-плексообразователем в пигменте зеленых растений — хлорофилле, строение и биохимические функции которого рассмотрены в главах 5 и 13. [c.184]


Смотреть страницы где упоминается термин Кальций биологическая функция: [c.499]    [c.461]    [c.304]    [c.138]    [c.96]    [c.181]    [c.169]    [c.488]    [c.181]    [c.215]    [c.68]    [c.16]   
Неорганическая химия (1987) -- [ c.598 ]




ПОИСК







© 2025 chem21.info Реклама на сайте