Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

серной кислоте элемент

    Присоединение воды (реакция гидратации). В обычных условиях этиленовые углеводороды не реагируют с водой, но при нагревании в присутствии катализаторов (хлористый цинк, серная кислота) элементы воды (водород и гидроксил) присоединяются к углеродным атомам по месту двойной связи с образованием спиртов (стр. 103) [c.71]


    В отличие от медно-цинкового элемента, во всех современных гальванических элементах и аккумуляторах используют не два, а один электролит такие источники тока значительно удобнее в эксплуатации. Например, в свинцовых аккумуляторах (см. 189) электролитом служит раствор серной кислоты. [c.278]

    Предполагают, что в этнх элементах концентрация ионов водорода б н достаточно велика (0,1 г-жв и более). При этом условии присутствие хинона и гидрохинона в растворе не влияет на активности ионов водорода. Ионы водорода могут быть введены в раствор в виде любой кислоты, например серной кислоты, не взаимодействующей с хиноном, гидрохиноном п водородом. [c.317]

    Такая же полная реакция протекает, еслн погрузить полоску металлического цинка в серную кислоту. Металл растворяется в кислоте (как на аноде рассматриваемого здесь элемента), а газообразный водород пузырьками выделяется из жидкости (как на катоде). Однако в этом случае невозможно получить полезную электрическую работу. [c.166]

    Химическая реакция цинковая обманка обжигается, затем обожженный материал обрабатывается серной кислотой. Полученный раствор сульфата цинка очищается от сопутствующих элементов и далее подвергается электролизу. [c.250]

    Процесс закачки. Комплекс технических средств для закачки в пласт серной кислоты в соответствии с одной из известных технологических схем объединения Татнефть (рис. 79) включает следующие основные элементы  [c.145]

    Отработанная 46,2 %-ная серная кислота подвергается вакуумной упарке до концентрации 65 %. Нагревательные элементы обогреваются паром под давлением 5 ат. [c.255]

    Как правило, один элемент ХТС может быть описан совокупностью нескольких модулей. Так, многослойный контактный реактор при моделировании ХТС производства серной кислоты представляется математической моделью в виде совокупности нескольких модулей химического превращения, нагрева и смешения — разделения. [c.327]

    Вычислите ЭДС для свинцового аккумулятора при 298 К, массовая доля серной кислоты 21,4% тн,5о. = 2,78 моль/1000 г. Уравнение реакции, протекающей в элементе, [c.325]

    Теплообмен между неподвижным слоем катализатора и охлаждающими (или нагревающими) элементами весьма затруднен в виду низкой теплопроводности слоя. Поэтому в ряде процессов теплообменные элементы предпочитают ставить не в слое, а между слоями катализатора, что приводит к громоздкости реактора и трудности в его- Конструировании. В частности, эти трудности имеются при конструировании мощных реакторов для окисления сернистого газа в производстве серной кислоты (см. главу V). При установке теплообменных элементов в неподвижном слое катализатора или расположении катализатора в трубах (рис. 44) невозможно применять эффективные жидкие хладагенты, в частности, холодную воду для отвода тепла из слоя при экзотермическом процессе, так как вследствие плохой [c.105]


    Принцип безотходности стремятся осуществить и в производствах, издавна работающих по прямоточной технологической схеме. Разработана и внедряется циклическая технологическая схема производства серной кислоты по контактному способу, благодаря которой в атмосферу не попадают выбросы, содержащие серу. Основной узел этой системы — каталитический реактор окисления 502 со взвешенными слоями катализатора. Элементы расчета этого реактора приведены в примере 17 данной главы. [c.110]

    Характерная черта современной химической промышленности — многосвязность ее элементов(подотраслей) со сравнительно небольшим числом отдельных видов сырья, например, с нефтью, природным газом, каменной солью и т. д. н полупродуктами, например, с аммиаком, этиленом, серной кислотой и другими, а также с энергоносителями. При этом химическая промышленность является не только крупным потребителем энергии различных видов (электрической, тепловой), но и крупным производителем различных видов энергии, т. е. ХТС — своеобразный энерготехнологический комплекс (рис. 1.2). [c.8]

    Замена серной кислоты в обычном свинцовом аккумуляторе на хлорную приводит к тому, что оба электрода работают как растворимые. Это позволяет проводить разряд элементов при значительно ббльшей плотности тока (до 50 а/дм-), чем это допустимо для свинцовых аккумуляторов. [c.880]

    Использование цеолитов, содержащих катионы переходных металлов. В присутствии некоторых катализаторов алкилирование изобутана этиленом протекает специфически. Известно, что изобутан не алкилируется этиленом под действием серной кислоты из-за образования стабильных этилсульфатов. Было исследовано алкилирование изобутана этиленом в присутствии цеолитных катализаторов и найдено, что наибольщей активностью обладают цеолиты типа СаУ, содержащие катионы редкоземельных элементов и переходных металлов. В результате реакции были получены не гексаны, как это можно было ожидать, а преимущественно изомеры октана ( 5 80%). Более того, алкилат по составу был сходен с продуктом, образующимся при алкилировании изобутана н-бутиленом соотнощение триметилпентанов к диметилгексанам равнялось 7,1 в случае этилена и 7,8 в случае н бутилена. [c.85]

    Основным аппаратом установки является реактор (контактор) различных типов емкостной — с системой выносных циркуляционных насосов для перемешивания контакторный — с внутренними циркуляционными устройствами и охлаждающими элементами каскадный — с внутренним охлаждением и циркуляционными устройствами без охлаждающих элементов. Наиболее эффективны и современны реакторы каскадного типа. Их применение значительно улучшило экономику процесса алкилирования. Такой реактор разделен перегородками на несколько реакционных зон 1—5 (рис. 93). В нем обеспечивается интенсивный контакт кислоты с реагирующими углеводородами, подаваемыми в каждую зону. Циркулирующие изобутан и серная кислота поступают в первую зону, затем перетекают во вторую и т. д. Это обеспечивает высокое соотношение изобутана и олефина в зонах, что благоприятно сказывается на качестве и выходе алкилата. [c.309]

    Нитрование идет за счет азотной кислоты, образующейся прн взаимодействии двуокиси азота с серной кислотой. Главную роль в процессе активирования реакции играет огромная способность концентрированной серной кислоты передавать протон бензольному кольцу и активировать его. Выдвигая такой механизм реакции, указанные выше авторы исходят из представления, что нитрование ароматических соединений связано с насыщением силового поля серной кислоты элементами азотистой кислоты и воды. Для достижения наиболее полного использования N2O4 отношение между количествами свободной серной кислотыи воды [(л—1)/(те + 1) по уравнению(6)] кконцунитрования не должно быть ниже некоторого минимального значения, характерного для каждого соединения (как показали экспериментальные данные, для бензола это отношение равно приблизительно 4 1, для хлорбензола 5 1, для толуола 1,8 1). [c.402]

    Таллий (thallium) открыт В. Круксом в 1861 г. при помощи спектрального анализа в камерной пыли, получающейся при производстве серной кислоты. Элемент назван по характерной зелёной линии в спектре (Sa),W — зелёная eimeb). Мета.тлическнй таллий был получен Л а м и в 1862 г. [c.174]

    Выдвигая такой механизм реакции, вышеуказанные химики исходят из представления, что нитрование ароматических соединений связано с насыщением силового поля серной кислоты элементами азотистой кислоты и воды. Для достижения наиболее полного испо.льзовапия N 04 отношение между количествами свободной серной кислоты и воды [c.203]

    М азотной кислоты (табл. 44). Висмут можно вновь перевести в водную фазу встряхиванием хлороформа с 2 н. серной кислотой. Элементы, купферраты которых экстрагируются из 1 М кислоты, будут оставаться в хлороформе в большей или меньшей степени в зависимости от концентрации купферрона. Медь(П), вероятно, распределяется между фазами. Висмут прекрасно отделялся от свинца (и, вероятно, от других металлов, упоминавшихся выше). Экстракция висмута может быть проведена в присутствии винной кислоты (чтобы сурьма и олово оставались в растворе). Если присутствуют металлы, образующие с купферроном осадки в 0,1 УИ кислоте, последний должен быть добавлен в избытке. Соответствующие указания см. ниже (стр. 303). [c.294]


    В аппарате, изображенном на фиг. 140, серная кислота концентрируется от 60 до 93%. Погружные элементы обогреваются паром дифенильной смеси. Коэффициент теплопередачи в аппарате по данным замеров лежит в пределах от 735 до 1220 ккал1м час°С. [c.233]

    ГГа рис. 69 изображен трехвинтовой, вертикальный насос марки ХВ-22/30, предназначенный для перекачивания серной кислоты с температурой 40° С. Подача насоса от 2 до 4 м /ч при давлении нагнетания 30 кгс/см . Основными элементами рабочего механизма являются три винта — один ведущий 5 и два ведомых 4, выполненные из нержавеющей стали и заключенные в бронзовую обойму 3, вложенную в корпус цасоса 2, который закрывается крышкой 1. [c.131]

    Цинк реагирует с серной кислотой с образованием водорода и сульфата цинка. Из 65,37 г Zn и 98,08 г H2SO4 образуются 2,02 г Н2 и 161,43 г ZnS04. Полное уравнение реакции содержит одинаковое число атомов каждого элемента в левой и в правой частях. [c.483]

    Каркасы панелей представляют собой жесткие рамы с обшивкой из листовой стали толщиной 5—6 мм. Каркасы оборудованы специальными элементами для строповки и перемещения их в пространстве. Анкера (штыри) и шайбы для крепления слоев обмуровки изготовлены из жаростойкой стали 12Х18Н10Т. Во избежание ванадиеЕой коррозии в подогревателях, работающих на мазутном топливе, шайбы обмуровки углубляют в слои огнеупорной массы на 40—50 мм и изолируют ватой, пропитанной раствором огнеупорного порошка в жидком стекле. Для предотвращения низкотемпературной коррозии (при конденсации серной кислоты) холодных частей анкеров их покрывают битумным лаком. [c.249]

    Если элемент образует бескислородную кислоту и кислоты с различным содержанием атомов кислорода, то названия ионов кислотных остатков имеют окончание -ид для безкислородных кислот, -ит -для кислородных кислот с меньшим содержанием кислорода и -ат -для кислородных кислот с большим содержанием кислорода. Сульф й ион - кислотный остаток сероводородной кислоты Сульфми-ион - кислотный остаток сернистой кислоты Сульфа я ион - кислотный остаток серной кислоты Н ЗО . [c.140]

    Необходимость использования ингибиторов коррозии при работе с ОСК вызвано тем, что во-первых, на практике часто не выдерживается высокая (неопасная) концентрация Н2504 во всех элементах оборудования и, во-вторых, даже концентрированная серная кислота весьма агрессивна к резино-техническим и другим нестальным изделиям. [c.221]

    Принцип работы иечи ДКСМ следующий флотационный колчедан и воздух подаются в нижнюю зону печи, где происходит обжиг колчедана в кипящем слое при 700—800 °С. Обжиговые газы, содержащие огарок, через отверстия газораспределительной решетки поступают в кипящий слой верхней зоны. Запыленный поток газов из верхней зоны печи направляется в циклон возврата огарка. Огарок, уловленный в циклоне, возвращается в верхний кипящий слой. Очищенный от крупных частиц огарка обжиговый газ из циклона направляется для дальнейшей тонкой очистки в электрофильтр ОГ-4-16 и далее направляется для получения серной кислоты. Основное количество огарка ( 80%) удаляется из верхнего кипящего слоя через специальное переливное окно. Поддержание требуемых температур в нижней зоне (700—800 °С) и в верхней зоне (450 °С) осуществляется с помощью тепловоспринимающих элементов, устанавливаемых в нижней и в верхннх кипящих слоях. Наиболее крупные частицы огарка колчедана, уносимого потоком газа в верхнюю зону печи, выделяются из потока газа из-за снижения скорости в расширенной части нечи и создает кипящий слой под верхней газораспределительной решеткой, которую пополняет возвращаемая из циклона мелкая фракция огарка. [c.56]

    Получение соляпой кислоты синтезом из элементов позволяет использовать водород, получаемый одновременно с хлором при электролизе водных растворов солей щелочных металлов, и не расходовать на получение соляной кислоты серную кислоту. [c.64]

    Если исходной является вода из централизованного водопровода или из подземного источника, не требующая предварительного осветления перед поступлением на ионитовые фильтры, то установка состоит из ионитовых фильтров и прочих элементов, непосредственно связанных с циклом обессоливания воды. При высокой жесткости исходной воды (более 20—25°) с преобладанием карбонатной жесткости может оказаться эконом ически целесообразным пойти на усложнение схемы установки, приняв предварительное известкование воды для снятия карбонатной жесткости воды. Увеличение строительной стоимости установки при значительной ее производительности может быть перекрыто снижением эксплоатационной стоимости обессоленной воды за счет применения дешевой извести и соответственного уменьшения расхода более дорогой серной кислоты. Однако преимущества такого варианта должны быть обоснованы технико-экономическими расчетам . [c.53]

    В этом процессе фосфорная кислота служит не только реагентом, заменяющим серную кислоту, но и носителем питательного элемента — фосфора, чем объясняется высокая концентрация Р2О5 в двойном суперфосфате по сравнению с простым. В СССР получили применение камерный, камерно-ио-точный, бескамерный нли поточный и ретурный способы производства двойного суперфосфата. Схема камерного способа не отличается от непрерывной схемы производства простого суперфосфата. Фосфат разлагается концентрированной (экстракционной упаренной или термической) фосфорной кислотой. Ка- [c.241]

    Вычислите э. д. с. для свинцового аккумулятора при 298 К. массовое содержание серной кислоты 21,4% тн,зо.= 2,78моль/1000г. равнение реакции, протекающей в элементе, [c.308]

    Коррозионная стойкость хромоникельмолибденомедистых сталей в некоторых агрессивных средах, в особенности в растворах серной кислоты средних концентраций при повышенной температуре, вплоть до 80" С, довольно высока. Влияние легирующих элементов па коррозионную стойкость этих сталей в серной кислоте сказывается различно, в зависимости от концентрации ц температуры среды. Хром повышает коррозионную стойкость в 5—30%-иой серной кислоте при температуре 80° С. Никель и медь повышают коррозионную стойкост1з в 5—60%-ной серной кислоте и особенно в 40—60%-ной ири 80° С и в 5— 50%-ной лрн температуре до 80° С. Молибден увеличивает стойкость стали в 5—70%-ной кислоте прн 80° С и в 5—507о-пой при температуре кипения. [c.230]

    Фирма National Lead o. для очистки выхлопных газов промышленных предприятий от частиц ныли и тумана размером менее микрона применила новый фильтр. Фильтр разработан применительно к очистке газов от пигмента—двуокиси титана. Газ, выходящий из кальцинатора заводов по производству пигмента сульфатным методом, содержит пыль Т102, туман серной кислоты и SO2. В качестве фильтрующего элемента использовали полиэфирные, полипропиленовые и полиакриловые волокна в слое с максимальной толщиной 5 мм, орошаемые из сопел разбавленной кислотой, которая далее направляется на рециркуляцию. Промышленная установка рассчитана на очистку 1530 м /мин газа. [c.85]

    Для проведения реакций с большим тепловым эффектом используют аппараты с внутренними теплообменными элементами большой поверхности. Примером может служить реактор с пучком двойных теплообменных труб для алкилирования углеводородов, в частности для получения изооктана из изобутана и бутилена. В реакторе циркулирует эмульсия смеси углеводородов с серной кислотой. Реактор (рис. 4.6) имеет вертикальный цилиндрический корпус 6, рассчитанный на давление 1 МПа, внутри которого для отвода теплоты реакции расположен пучок 8 двойных теплообменных труб (трубок Фильда), окруженный кожухом 7, играющим роль направляющего диффузора. В нижней суженной части кя куха помещено колесо 11 осевого насоса (винтовая мешалка), обеспечивающее циркуляцию жидкости, перемешивание и обтекание теплообменной поверхности. Вал колеса выведен наружу через двойное торцовое уплотнение, привод расположен внизу. Вращение жидкости предотвращается продольными ребрами. Для подвода хладагента в верхней части расположены две распределительные камеры с трубными решетками 2 и 4. Верхние концы наружных теплообменных труб, заглушенных снизу, ра.звальцо-ваны в трубной решетке 4, верхние концы внутренних труб закреплены в решетке 2. Нижняя решетка 9 служит для крепления шпильками нижних концов теплообменных труб, чтобы обеспечить жесткость трубного пучка. Концы внутренних труб снабж ны продольными ребрами. [c.250]

    На практике встречается много примеров разрушения конструкций или их элементов, вызванного водородной хрупкостью высокопрочные углеродистые стали разрушаются за несколько недель и даже дней при контакте с природным газом, содержащим сероводород стальные пружины иногда растрескиваются при травлении в серной кислоте или после нанесения гальванического покрытия. Во всех этих случаях растрескивание вызвано внедрением в металл атомов водорода, выделяющегося в результате химических реакций (например, при травлении в кислотах). Наводороживание не всегда кончается разрушением металла. Присутствпе водорода в кристаллической решетке ведет к потере им пластичности (т. е. к хрупкости), но только достаточно большие растягивающие нагрузки или значительные внутренние напряжения могут привести к его растрескиванию, которое обычно протекает как транскристаллитный процесс. [c.454]

    Присутствие различных катализаторов, в большинстве случаев солей металлов, благоприятствует процессу абсорбции газообразных олефинов серной кислотой. Так, соли металлов восьмой группы периодической системы элементов, например цианистый никель, увеличивают скорость реакции [58] для олефинов, содержащих более трех углеродных атомов. Указывается [59] на применение в качестве катализаторов комплексных цианидов металлов. Ряд катализаторов перечисляется при описании приготовления индивидуальных эфиров. Можно повысить эффективность процесса абсорбции газообразных олефинов, сначала сжижая олефины под давлением, а затем обрабатывая их серной кислотой [60]. Чтобы получить наиболее высокий выход кислых эфиров, необходимо использовать серную кислоту минимальной концентрации, способной обеспечить присоединение кислоты к данному олефину, так как с возрастанием концентрации кисло ты значительно усиливаются процессы полимеризации, в особенности высших олефинов. Пропилен и бутилены [61] полиме-ризуются при действии концентрированной серной кислоты. Пропилен реагирует с 90—92%-ной серной кислотой, образуя 4-ме-тилнентен-1 [62], тогда как 98%-ная кислота полимеризует его в более высококинящие продукты [63]. При избытке концентрированной кислоты изобутилен и высшие олефины превращаются в сложную смесь углеводородов, в которой преобладают парафины и циклоолефины [64]. В присутствии сернокислых солей меди и ртути даже этилен превращается 95%-ной кислотой в смесь углеводородов различных классов [65]. [c.16]


Смотреть страницы где упоминается термин серной кислоте элемент: [c.20]    [c.83]    [c.17]    [c.35]    [c.271]    [c.640]    [c.170]    [c.63]    [c.28]    [c.228]    [c.50]    [c.146]    [c.288]    [c.165]   
Рабочая книга по технической химии часть 2 (0) -- [ c.162 , c.174 , c.175 ]




ПОИСК





Смотрите так же термины и статьи:

Иод элемент кислоты

М а л к и м а н. Изыскание оптимальных форм и размеров элементов ванадиевого катализатора для производства контактной серной кислоты



© 2025 chem21.info Реклама на сайте