Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиэтилен катализаторы

    Начались интенсивные поиски способов получения линейных неразветвленных полимеров. И в 1953 г. немецкий химик Карл Циглер (1898—1973) открыл свой знаменитый титан-алюминиевый катализатор, на котором был получен полиэтилен с регулярной структурой. [c.136]

    Получение полиэтилена при среднем давлении. Способ получения полиэтилена при средних давлениях разработан в США фирмой Филлипс Петролеум Компани [61]. Процесс ведется при температуре 180—250° и давлении 35—105 ат. Этилен, предварительно полностью освобожденный от сернистых соединений, кислорода, водяных паров и углекислоты, растворяется под давлением при 20—30° в ксилольной фракции в количестве 7—9% вес. и подвергается полимеризации в трубчатом автоклаве над катализатором из окисей хрома и молибдена, нанесенных на окись алюминия или алюмосиликат. Целесообразнее применять большой избыток растворителя, чтобы полиэтилен оставался в растворе, а не отлагался на катализаторе, пассивируя его. Кроме того, при этом [c.223]


    Полиэтилен получают полимеризацией этилена при высоких давлении и температуре или в присутствии катализаторов при низком и среднем давлении. [c.104]

    Полимеризация этилена при высоком давлении (100—350 МПа,, или 1000—3500 кгс/см ) протекает при 200—300°С в расплаве в присутствии инициаторов (кислорода, органических перекисей). Полиэтилен низкого давления получают полимеризацией этилена под давлением 0,2—0,5 МПа (2—5 кгс/см ) и температуре 50— 80 °С в присутствии комплексных металлоорганических катализаторов (триэтилалюминия, диэтилалюминийхлорида и триизобутил-алюминия). Полиэтилен среднего давления получают полимеризацией этилена в растворителе при давлении 3,5—4,0 МПа (35— 40 кгс/см ) и температуре 130—170 °С в присутствии окислов металлов переменной валентности, являющихся катализаторами (окислы хрома, молибдена, ванадия). В качестве растворителей применяют бензин, ксилол, циклогексан и др. [c.104]

    Полиэтилен, получающийся при низких давлениях, имеет большой молекулярный вес, более высокую температуру плавления, большую плотность и более высокую прочность на разрыв, однако уступает полиэтилену высокого давления по диэлектрическим свойствам и гибкости, вследствие присутствия в полимере остатков катализатора, что делает невозможным его использование в технике высоких частот. [c.320]

    Активность катализатора определяется соотношением алкилов алюминия и четыреххлористого титана. Изменяя это соотношение, можно регулировать процесс полимеризации и получать полимеры с заданными свойствами. При увеличении содержания четыреххлористого титана в сфере реакции возрастает скорость полимеризации этилена, значительно повышается выход полиэтилена, но уменьшается его молекулярный вес. Активность катализатора можно значительно повысить введением, третьего компонента. В промышленности обычно применяют диэтилалюминийхлорид, в присутствии которого легче регулировать процесс полимеризации и получать полиэтилен с необходимым молекулярным весом. Кроме того, диэтилалюминийхлорид является менее пожаро- и взрывоопасным, чем три-этилалюминий. [c.7]

    Полиэтилен среднего давления (СД) получается полимеризацией этилена в растворителе при давлении 3,5—4,0 МПа (35—4Ю кгс/см ) и температуре 130—170 °С в присутствии окислов металлов переменной валентности в качестве катализаторов. [c.9]

    Полимеризацию проводят в растворителе, в котором растворяются этилен и полиэтилен. Растворитель способствует равномерному распределению катализатора и отводу тепла полимеризации. В качестве растворителей используют бензин, ксилол, циклогексан и др. [c.9]


    Этилен можно полимеризовать в растворе углеводорода или в состоянии сжатого газа. Когда используются хорошо растворяющий полиэтилен углеводород и достаточно высокие температуры, полиэтилен остается в растворе (полимеризация в растворе). При использовании плохого растворителя и довольно низких температур полиэтилен получается в виде гранул, ядром которых служит катализатор (суспензионная полимеризация). При газофазной полимеризации полимер также образуется в виде гранул. [c.166]

    Полиэтилен — продукт полимеризации этилена, происходящей иод давлением 150—250 Л 1Па и при температуре 150—250°С или же прн низком давлении, но в присутствии катализаторов. Полимеризация этилена выражается уравнением [c.378]

    Чрезвычайно интересно и важно, что, например, примесь нескольких молекул воды, сероводорода и некоторых других компонентов в 1 млн. молекул этилена уже приводит к отравлению применяемых катализаторов и мешает получать высококачественный полиэтилен. [c.302]

    Для того чтобы молекулы газообразного этилена превратить в твердый полиэтилен, применяют высокое давление и катализаторы. При первоначальных исследованиях в этой области, применяя давление до 100 ат, удавалось получать полиэтилен с молекулярным весом около 500, т. е. его молекула состояла из 18 молекул этилена. Полученный же полиэтилен представлял собой густую жидкость. [c.337]

    Образовавшийся раствор полиэтилена в бензине, ксилоле или ином жидком углеводороде подвергается затем центрифугированию, при котором полиэтилен-сырец отделяется, а растворитель подвергается отмывке от следов катализатора и осушке, после чего снова используется в процессе полимеризации. Полиэтилен-сырец подвергается обработке водой, метиловым или пропиловым спиртом для удаления остатков катализатора. Полученный в виде белого порошка полиэтилен сушится и дальше используется для изготовления различных изделий. [c.339]

    А для того чтобы получить полиэтилен по рецепту Циглера, сырье приходится сначала растворить в бензине—иначе реакция попросту не пойдет. Затем полученный полиэтилен нужно отделить от растворителя и катализатора, многократно промыть (сначала водой, а потом спиртом) и высушить. В итоге полиэтилен низкого давления несколько дороже. [c.127]

    Полиэтилен низкой плотности существенно отличается по своим свойствам от полиэтилена, полученного на катализаторе Циглера он имеет более низкие плотность и температуру плавления. Было высказано предположение, что это связано с разветвленностью цепей продукта, синтезированного при высоком давлении. Объяснить, каким образом в процессе полимеризации могут образовываться разветвленные макромолекулы и какое они могут оказать влияние на плотность, и растворимость полимера  [c.285]

    Проведение, полимеризации этилена при 180—200° приводит сразу к образованию полиэтиленов, т. е, триэтилалюминий является катализатором. [c.596]

    В процессе полимеризации на активной поверхности катализатора образуется полимер (полиэтилен), который растворяется в углеводородном растворителе и смывается им с поверхности катализатора, благодаря чему катализатор в процессе работы сохраняет свою активность достаточно длительное время. [c.56]

    Растворенный в углеводородном растворителе полиэтилен вместе с частицами увлекаемого с жидкой фазой твердого катализатора через верх реактора 5 уходи г в сепаратор 7. [c.56]

    По содержанию кобальта все исследованные катализаторы можно разделить на две группы. В одной из них, в которую входят продукты, полученные прививкой кобальтсодержащих мономеров к линейному полимеру (например, полиэтилену),— катализаторы Со(Ак)г — ПЭ, СоС12-4ААМ — ПЭ и Со — ПЭ, содержание кобальта составляет (1—2)-10 атомов на 1 г катализатора. [c.166]

    Продукт реакции фильтруют в горячем состоянии, катализатор в особой установке промывают ксилолом и затем регенерируют. Горячий ксилольный раствор полиэтилена охлаждают до 25—60 и выделяющийся в осадке полимер отделяют фильтрованием. Для дальнейшего выделения полиэтилена к фильтрату добавляют л идкий пропан, бутан или спирт. Затем от фильтрата перегонкой отделяют ксилол, возвращающийся на иолимеризациоппую установку. В остатке остаются низшие полимеры этилена и алкилированпый ксилол. Полиэтилен освобождается от остатков растворителя. Превращение взятого для полимеризации этилена составляет около 98%. [c.224]

    Интересный новый вид полимеризации бутадиена при помощи катализатора Циглера, применяемого для полимеризации этилена в полиэтилен, предложен Вильке [51. Таким иутем мо кио из бутадиена получить с 80— 90%-ным выходом оба стереоизомера циклододекатриена-1,5,9. Этот циклический тример представляет особый промышлеиный интерес в связи с возможностью получения из него додекандикислоты и соответственно ш-амипо-додеканокислого лактама. [c.262]

    Катализаторы О — алкилирования. Из предложенных гомогенных (серная, фосфорная, борная кислоты) и гетерогенных (оксиды алюминия, цеолиты, сульфоугли и др.) кислотных катализаторов в промышленных процессах синтеза МТБЭ наибольшее распространение получили сульфированные ионообменные смолы. В качестве полимерной матрицы сульфокатионов используются полимеры различного типа поликонденсационные (фенол — формальдегидные), полимеризационные (сополимер стирола с ди — винилбензолом), фторированный полиэтилен, активированное стекловолокно и некоторые другие. Самыми распространенными являются сульфокатиониты со стиролдивинилбензольной матрицей двух типов с невысокой удельной поверхностью около 1 м /г [c.149]


    В технической литературе встречается сравнительно немного сведений о методах, применяемых для получения этого полимера в больших масштабах. Процесс фирмы Карбид энд Карбон, описанный Д. П. Хемиль-тоном [14] и Стрезером [291, включает непрерывный процесс полимеризации при давлении от 1400 до 3850 кг1см и температуре 200—300 в присутствии 0,01 % кислорода в качестве катализатора. Реакция протекает в проточной системе за один проход превращается в полимер от 4 до 20 % этилена. Избыток этилена направляется на повторное использование или на выделение, а полимерный продукт собирается по мере образования его. Не вступивший в реакцию этилен и увлеченный полимер непрерывным потоком поступают в сосуд, находящийся под давлением от 7 до 70 ат и при температуре 125—300°. Образовавшийся полиэтилен выводится из системы и охлаждается. [c.167]

    Были получены также углеводороды путем взаимодействия этилена, окиси углерода и водорода в присутствии катализаторов Фишера—Тропша. Характер этих соединений по своим свойствам варьирует в широких пределах — от масел до хрупких парафинов и от гибких пластичных полимеров, как полиэтилен, до очень твердых полимеров, которые получаются при разложении диазометана. Эти различия в свойствах являются результатом двух независимых друг от друга структурных факторов. [c.168]

    Полиэтилен получают разными методами. По основному методу полимеризация проводится при температуре 190 °С и давлении 1500 ат, катализатором служит кислород в количестве 100—200 частей на миллион. В другом процессе этилен растворяют в углеводороде в раствор добавляют катализатор СГ2О3 на алюмосиликатном носителе температура процесса 93—150 °С, давление от 7 до35ат. Суспензия содержит около 5% этилена и 0,5% катализатора. По-новому, недавно появившемуся методу этилен [c.333]

    Можно работать нри значительно более низких давлениях, если использовать в качестве катализатора алкилалюминий в смеси с тетрахлорэтаном [266, 267], окисью хрома на носителе [268— 270], никелем или кобальтом на древесном угле [271] или промо-тированным молибдатом алюминия [272]. При этом полимеры имеют более линейную структуру. Подобным образом может быть получен и полипропилен. Из этилено-нропиленовых и этилено-бутеновых смесей можно получить высокомолекулярные сополимеры с хорошей эластичностью. Полиэтилен представляет интерес прежде всего с точки зрения его отличных электроизоляционных свойств его химическая стойкость, легкость обработки, легкий вес и большая упругость дают возможность его применения для многих других целей. [c.581]

    Найдены катализаторы, благодаря которым этилен полимеризуется при низких давлениях. Например, в присутствии триэтил-алюминия (С2Н5)зА1 с добавкой 1лорида титана (IV) Ti l, (катализатор Циглера) полимеризация протекает при атмосферном давлении (получается полиэтилен низкого давления)-, на оксидах хрома (катализатор Филипса) полимер образуется при давлении до 10 МПа (полиэтилен среднего давления). [c.500]

    Катализаторы типа КС представляют собой композиции фталоциани-на кобальта с полиэтиленом высокого давления (КС-1) и с полипропиленом (КС-2). Они выполнены в виде удобных в эксплуатации насадоч-ных элементов с развитой геометрической поверхностью и загружаются в окислительный реактор одним слоем внавал, где выполняют одновременно роль насадки, способствующей улучшению массообмена между окисляемым водно-щелочным раствором и воздухом. [c.148]

    Так, известны различные методы получения полиэтилена. Первоначально промышленный метод заключался в проведении процесса при температуре около 200°С и давлении 1200—2000 атм при возбуждении реакции небольшими добавками кислорода. Однако в настоящее время полиэтилен получают при менее высоком и даже при атмосферном давлении в присутствии катализаторов. Хорошие результаты получены в случае применения в качестве катализатора триэтилалюминия А1(С2Н5)з совместно с четыреххлористым титаном Т1С14. Описано применение катализатора, состоящего из 8Юг и АЬОз с нанесенной на них окисью хрома, и др. В зависимости от условий процесса и вида катализатора получается полиэтилен с различным средним молекулярным весом, с различной степенью разветвленности цепей, степенью кристалличности и соответственно различными свойствами.  [c.562]

    Полиэтилен низкого давления (НД) получают полимеризацией этилена под давлением 0,2— 0,5 МПа (2—5 кгс/см ) и температуре 50—80°С в присутствии комплексных металлоорганических катализаторов. Наиболее широкое распространение в промышленности получили катализаторы Циглера — Натта, состоящие из четыреххлористого титана и алкилов алюминия (триэтилалюминия, диэтил-алюминийхлорида и триизобутилалюминия). Полимеризация этилена в присутствии таких катализаторов протекает по ионному механизму и относится к анионно-координационному типу. [c.7]

    Производство полиэтилена при среднем давлении имеет ряд преимуществ по сравнению с другими методами, К ним относятся доступность и неток-сичность катализаторов, возможность их многократного использования путем регенерации, простота технологического и аппаратурного оформления процесса, меньшая взрыво- и пожароопасность. Полиэтилен СД имеет более высокие показатели физико-механических свойств, чем полиэтилен высокого давления. [c.9]

    Самый крупный потребитель этилена — производство полиэтилена. В 1980 г. доля полиэтилена в l иpoвoм потреблении этилена превысила 50%- Полиэтилен высоксго давления (низкой плотности) получают методом радикальней полимеризации при 200— 270 °С и 100—350 МПа в присутствии инициаторов (кислород, органические перекиси). Полиэтилен среднего давления получают в присутствии окисных катализаторов при 130—170 °С и давлении [c.182]

    В качестве растворителя обьсчно используется циклогексан, В растворителе суспендируется 0,3-0,7% катализатора (в расчете на вес растворителя) полученную суспензию нагревают в реакторе при 100-15СРС, Этилен вначале поглощается растворителем под давлением 35 атм и при том же давлении подается в реактор. Скорость подачи раствора этилена регу ш-руется для поддержания на определенном уровне текшературы экзотермической реакции. Образующийся полиэтилен растворяется в растворителе, давая вязкий раствор, [c.119]

    Аналогично полиэтилену низкого давления из пропилена, растворенного в бензине (60—70 °С, 6-10 -10-10 Па) в присутствии 0,3% катализатора (АЦСгНд)) и Т1С11), получают изотактический полипропилен. Благодаря высокой степени кристалличности он превосходит по своим свойствам полиэтилен. [c.192]

    Обычно процессы, протекающие при давлениях до 1000 ат, называются процессами высоких давлений-, процессы же, протекающие при давлениях выше 1000 ат, называются условно процессами свер.хвысоких давлений. Например, полиэтилен (политен) до 1955 г. получали при 2000—3000 ат сейчас этот процесс можно вести в присутствии катализаторов при нормальном (пониженном) давлении— синтез Циглера (стр. 590). Такие процессы, как синтез аммиака, синтез метанола, деструктивное гидрирование углей и тяжелых масел в бензин, проводятся под давлением 300—1000 ат. [c.348]

    Следует отметить, что существуют методы синтеза полиэтилена и без применения металлорганических катализаторов. Так, например, американская фирма Филлипс [15] разработала катализатор из СГзОд на носителе из SiO.j и AljOg. Процесс полимеризации этилена в полиэтилен (с 100% превращением) проводится при 135— 190° и 35 ат в присутствии таких растворителей, как н-пентан или н-октан. Продукт полимеризации известен под маркой марлекс . Он плавится при 113 —117 , имеет молекулярный вес 5000—30 000 [c.596]

    В 1953 г. Карл Циглер в Гермашш и Джулио Натта (Милан) создали катализатор, позволяющий проводить полимеризацию даже при атмосферном давлении. Это позволило снять сразу несколько проблем. Во-первых, избежать высокого давления и температуры (при этом полиэтилен и другие полимеры при каталитической или ионной полимеризации получаются неразветвленные). Это резко улучшает свойства полимера - более высокая температура плавления, хорошие механические свойства. Во-вторых, достаточно просто регулировать длину цепи образующегося полимера (грубо говоря, количеством катализатора). В третьих, появилась возможность регулировать структуру полимеров. [c.88]

    Полиэтилен низкого давления (мол. вес до —3-10 ) получают, по Циглеру, с помощью смещанных катализаторов [напрнмер, Ti U + -f АЦСзНбЬ ср. стр. 188] при этом Ti + переходит в низшую валентность. Натта предложил для этой реакции анионный механизм. Полагают, что получающиеся макромолекулы не разветвлены. В противоположность этому под действием хлористого алюминия (катионная полимеризация) этилен полимеризуется с образованием сильно разветвленных, сравнительно низкомолекулярных веществ (смазочные масла). [c.937]


Смотреть страницы где упоминается термин Полиэтилен катализаторы: [c.222]    [c.222]    [c.168]    [c.119]    [c.501]    [c.677]    [c.16]    [c.574]    [c.136]    [c.596]   
Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6 (1961) -- [ c.73 , c.74 ]




ПОИСК







© 2025 chem21.info Реклама на сайте