Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пептидная гидролиз

    Все пептиды под влиянием минеральных кислот н щелочей расщепляются водой (гидролизуются) по месту пептидных связей с образованием аминокислот. Например  [c.285]

    Еще в 1888 г. А. Я- Данилевский высказал гипотезу о том, что различные а-аминокислоты, образуя белки, соединяются за счет аминогрупп и карбоксильных групп при помощи группировки —СО—НН—, впоследствии названной пептидной связью. Наличие пептидных связей в белках доказано многими фактами. В первую очередь оно подтверждается присутствием в продуктах гидролиза белков полипептидов — веществ, содержащих пептидные связи. Белки, как и полипептиды, дают так называемую биуретовую реакцию, характерную для соединений с пептидными связями (стр. 296). [c.290]


    Вопрос о природе связи аминокислотных производных с другими нефтяными компонентами (порфиринами, асфальтенами) пока не решен. Ряд экспериментальных результатов косвенно свидетельствует о возможности их взаимосвязывания или ассоциирования. Известно, что порфррины не удается отделить от аминокислот с помощью электрофореза [761]. После гидролиза заметно меняются характеристики порфириновых компонентов концентрата .несколько увеличивается удельный объем их удерживания при г ель-хроматографии [390], меняются подвижность при тонкослойной хроматографии и И К спектры. Однако убедительных прямых подтверждений наличия химической связи между аминокислотами (пептидными) и порфириновыми молекулами не получено. [c.135]

    Аналогичная ситуация реализуется, по-видимому, также и в ферментативных реакциях. Взаимодействие с субстратом одной функциональной группы белка может быть усилено за счет участия в реакции какой-либо другой, рядом расположенной группы нуклеофильного или электрофильного характера. Так, например, при гидролизе пептидной связи на активном центре карбоксипептидазы А см. схему на стр. 19) нуклеофильная атака молекулой воды усилена за счет общеосновного катализа со стороны карбоксильной группы остатка 01и-270 (а возможно и под действием гидроксильной группы остатка Туг-248). Общекислотный катализ осуществляет, по-видимому, Туг-248. Кроме того, расщепление пептидной связи субстрата может быть существенно облегчено в результате электрофильной атаки атомом 2п. [c.65]

    Зачастую механизм действия катализаторов заключается в образовании комплекса катализатора с молекулой одного из реагирующих веществ (субстратов). Этот комплекс вступает в химическую реакцию со значительно большей скоростью, чем несвязанная в комплекс молекула исходного вещества. Так, ионы ряда металлов, например Се , катализируют гидролиз пептидных связей [c.244]

    Пептидную связь можно гидролизовать в кислой, щелочной среде и под действием ферментов, получив снова. аминокислоты. С помощью подходящей комбинации экспериментальных методов можно определить последовательность расположения аминокислотных остатков в молекулах пептидов и белков. Эта последовательность называется первичной структурой пептида или белка. [c.191]

    С другой стороны, эти ферменты сильно различаются по специфичности их действия. Так, сериновые протеазы а-химотрипсин и эластаза осуществляют гидролиз пептидной связи, образованной аминокислотой, содержащей в положении гидрофобную боковую группу R при этом специфичность а-химотрипсина определяется объемным гидрофобным радикалом в молекуле субстрата (типа боковой группы фенилаланина, триптофана), а для эластазы — метильной группой аланина. Механизм наблюдаемой специфичности обусловлен весьма незначительными различиями в строении активных центров этих двух ферментов. По данным рентгеноструктурного анализа, в активном центре а-химотрипсина имеется довольно вместительный гидрофобный карман , где связывается ароматическая боковая группа гидролизуемого пептида (рис. И, а ср. с рис. 9). В активном центре эластазы размеры сорбционной области, где происходит связывание метильной группы субстрата (рис. 11, б), намного меньше, чем в случае а-химотрипсина. Это вызвано тем, что вместо Gly-216 и Ser-217 см. рис. 9) в соответствующих положениях эластазной пептидной цепи расположены более объемные остатки треонина и валина [3]. [c.35]


    Подобного рода закономерности (а именно, увеличение потенциальной сорбционной способности субстрата не отражается на экспериментальном показателе сорбции, но последующая химическая реакция протекает быстрее) широко распространены в ферментативном катализе. Так, при изучении гидролиза центральной пептидной связи в серии синтетических субстратов под действием пепсина (табл. 10) [c.59]

    В качестве иллюстрации смешанных типов ингибирования и активации ферментативных реакций можно привес+и данные по влиянию добавок н-бутанола на скорость реакций гидролиза сложноэфирного (рис. 79, а = 0,27, Р = 0) и пептидного (рис. 80, а = 0,2, Р = 2,3) субстратов карбоксипептидазой В, а также так называемое антиконкурентное (Р == О,/С = со,а/Сг з) влияние эффектора на катализ ацетилхолинэстеразой (рис. 81). [c.224]

    Для определения М-концов пептидной цепи получают М-производ- ное концевой аминокислоты пептида, которое идентифицируют после полного гидролиза белка. [c.376]

    С-Концы пептидных цепей определяются избирательным отщепле нием концевой аминокислоты с помощью специфического фермента — карбоксипептидазы и последующей идентификацией этой аминокислоты. Если макромолекула белка состоит из двух (или более) пептидных цепей, как в случае инсулина (см. рис. 53), то избирательно разрушают дисульфидные мостики окислением (например, надмуравьиной кислотой) и затем полученные полипептиды разделяют путем фракционирования на ионитах. Для определения последовательности расположения аминокислот в каждой полипептидной цепи ее подвергают частичному кислотному гидролизу и избирательному расщеплению с помощью ферментов, каждый из которых разрывает полипептидную цепь только в определенных местах присоединения какой-то одной определенной аминокислоты или одного типа аминокислот (основных, ароматических). Таким образом получают несколько наборов пептидов, которые разделяют, используя методы хроматографии и электрофореза. [c.376]

    Щелочной гидролиз широко используется при исследовании состава и строения связанных карбоновых кислот нефти. Основные результаты таких работ систематизиро ваны в обзоре [9]. Кислотный гидролиз с последующим жидкостно-хроматографическим анализом выделенных продуктов применен при изучении аминокислотных или пептидных остатков в составе нефтяных смол [389-391]. [c.45]

    При изучении кинетики гидролиза пептидного субстрата, катализируемого карбоксипептидазой В, был обнаружен активирующий эффект добавок н-бутанола [10]. Исходя из данных табл. 19, предложить кинетическую схему реакции в предположении двухстадийного механизма действия фермента и рассчитать константу активации н-бутанолом. [c.97]

    Денатурация является сложным и еще недостаточно изученным физико-химическим процессом. Денатурация сложной коллоидной молекулы белка не предусматривает глубоких нарушений ее структуры, как-то разрыва пептидной связи — СО — МН—, освобождения отдельных аминокислот, разрушения полипептидной цепочки первичной структуры белка и др., что может происходить при гидролизе ферментами, сильными кислотами, щелочами и др. [c.208]

    Имеется большое сходство между рассмотренной реакцией (а) и многочисленными реакциями гидролиза пептидов. При гидролизе пептидной связи наблюдается реакция разрыва одной из связей в пептидной группе, однако механизм реакции полностью не изучен. [c.571]

    Если же AG>0, то превращение не может протекать самопроизвольно. Однако обратная реакция мол ет протекать самопроизвольно. Например, в реакции синтеза пептидной связи бензоилтирозин (1 м)+глицинамид (1 м)бензоилти-розин-глицинамид (1 м) +НгО, AG=420 кал/моль, AG мало, но больще нуля. В этом примере пептидный синтез не идет самопроизвольно. Напротив, пептидный гидролиз, реакция, обратная приведенной, может протекать самопроизвольно. [c.150]

    Реакцией, которую катализуют трипсин, химотрипсин и эластаза, является гидролиз или разрыв пептидной связи белка  [c.318]

    Чрезвычайный интерес вызвало обнаружение в нефти аминокислот или пептидных остатков, распадающихся на свободные аминокислоты при гидролизе выделяемых из нефти концентратов ванадилпорфириновых комплексов [389—391]. Подробнее эти соединения будут рассмотрены при обсуждении азотистых компонентов нефти. [c.104]

    На рис. 73 приведена зависимость /х ) от 1/з для гидролиза пептидной связи карбобензилоксиглицилфенила-ланина, катализируемого ферментом карбоксипептидазой [c.260]

    В работе [118] предпринята попытка объяснить, почему остаток пролина в составе пептидной связи устойчив к гидролизу ос-химотринсином. Цель исследования состояла в том, чтобы выяснить, является лн отсутствие реакционной способности следствием неблагоприятного взаимодействия метиленовых групп пролиноЕ,ого кольца с активным центром фермента, или же нри образовании ферментсубстратного комплекса, так же как во время последующих стадий изменения структуры связи, имеют место стерические затруднения, и связаны лн эти стерические затруднения со структурой пролинового кольца или просто с за- [c.252]


    Основываясь на своих собственных исследованиях модельных соединений, Бреслоу предложил второй механизм гидролиза пептидов карбоксипептидазой А, не включающий образования ацил-ферментного промежуточного соединения [221, 222]. По существу, в гидролизе пептидной связи участвуют ион цинка, карбоксильный ион и гидроксильная группа тирозина. 2п(П) ио-прежнему играет роль кислоты Льюиса, координируя карбонильный кислород, а карбоксильная группа действует скорее как общее основание. Это мож но утверждать, поскольку в присутствии СН3ОН (вместо воды) метанолиз пептидного субстрата не наблюдался из-за неблагоприятной константы равновесия. Таким образом, фермент не может включать метанол в переходное состояние (в реакции, катализируемой в обоих направлениях) ни в случае эфирных, ни в случае пептидных субстратов. Это означает, что для протекания гидролиза необходимо удаление в переходном состоянии обоих протонов молекулы воды. [c.348]

    Ионы кобальта также могут проявлять интересные каталитические свойства при гидролизе эфиров и амидов. Например, Со(1П) гораздо более эффективен, чем Zn(H), при поляризации карбоксильной группы пептидной связи. Однако было установлено, что карбоксипептидаза Л ката.лпзирует гпдролпз оензоплглицил-L-фенилаланина в 10 раз быстрее, чем это могло бы обеспечивать присутствие Со (III). Следовательпо, в случае фермента должен проявляться дополнительный эффект. [c.354]

    Не менее поучительно сопоставление сорбционных функций а-химотрипсина и другой сериновой протеазы — трипсина. Размеры и форма субстратсвязывающего (сорбционного) участка в активных центрах обоих ферментов примерно одинаковы [3]. Единственное различие в первичной структуре полипептидных фрагментов, образующих гидрофобный карман , состоит в том, что в а-химотрипсине остаток 189 — это серин (см. рис. 9), а в трипсине в соответствующем положении находится отрицательно заряженная аспарагиновая кислота. Это приводит к тому, что в отличие от а-химотрипсина трипсин обнаруживает специфичность к гидролизу пептидных связей, образованных положительно заряженной аминокислотой (Lys, Arg). Сорбция положительно заряженного субстрата на ферменте (вблизи каталитически активного нуклеофила активного центра) происходит в данном случае за счет электростатических взаимодействий (рис. И, б). [c.35]

    В реакции полимерных или олигомерных субстратов, где наблюдается несколько разных по своей природе сорбционных эффектов, ускорение реакции за счет стабилизации (концентрирования) переходного состояния может быть огромным, как, например, при гидролизе сложноэфирной связи в пептидных п-нитрофенилкарбоксилатах, катализируемом папаином. Ферментативный процесс идет через промежуточное образование ацилфермента, образующегося при ацилировании субстратом остатка Суз-25 (см. схему на стр. 19, где X — это п-нитро- [c.47]

    Интересный пример участия имидазольной группы в гидролизе пептидной связи описан Коуном с сотр. [47]. Был исследован гидролиз следующих пептидов  [c.93]

    В этом уравнении указана только концевая часть пептидной цепи. Карбоксипепти-даза атакует только амидную группу иа конце цепи. Однако ее активность не зависит от природы боковых цепей К и К. Карбоксипептидазы катализируют гидролиз пептидов, но не обладают никакой активностью в гидролизе жиров последнюю реакцию катализирует совершенно другая группа ферментов. Присущая ферментам высокая степень специфичности необходима для того, чтобы все реакции, протекающие в сложных организмах, были в определенной мере независимы друг от друга. [c.451]

    На рис. 92 приведена зависимость 1/и от 1/5 для гидролиза пептидной связи ка-рбобензилокситлицилфенилаланина, катализируемого карбоксипеПтидазой  [c.331]

    По сравнению с неорганическими катализаторами ферменты обладают значительно большей специфичностью действия. Некоторые ферменты катализируют превращение практически только одного какого-либо вещества. Например, фермент глюкозооксида-за, получаемый из плесневых грибов различных видов, специфически окисляет -D-глюкозу до глюконовой кислоты и почти не действует на другие моносахариды. Многие ферменты действуют только на определенный вид химической связи. Например, фермент пепсин гидролизует пептидные связи в молекулах белка, образованные только ароматическими аминокислотами. Наименьшую специфичность обнаруживают ферменты, которые катализируют опреде- ленные группы реакций. Так, например, ферменты, [c.111]


Смотреть страницы где упоминается термин Пептидная гидролиз: [c.147]    [c.219]    [c.55]    [c.171]    [c.219]    [c.249]    [c.345]    [c.346]    [c.355]    [c.358]    [c.226]    [c.35]    [c.61]    [c.93]    [c.468]    [c.171]    [c.109]    [c.370]    [c.148]    [c.197]    [c.197]    [c.296]    [c.345]   
Основы биохимии Т 1,2,3 (1985) -- [ c.130 , c.148 ]




ПОИСК







© 2025 chem21.info Реклама на сайте