Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбоксипептидаза взаимодействие фермент субстрат

Рис. 62. Схема активного центра карбоксипептидазы А (остаток Туг 198 на схеме не изображен) фермента, катализирующего гидролитическое отщепление С-концевого аминокислотного фрагмента от полипептидов. Фермент абсолютно специфичен к Ь-конфи-гурации отщепляемого аминокислотного остатка и резко преимущественно катализирует отщепление остатков гидрофобных аминокислот. Гидролиз в этом случае протекает по механизму электрофильного катализа и требует участия иона цинка — в белке какие-либо группы, способные выступать в роли электрофиль-ных катализаторов, отсутствуют. Ион цинка фиксирован в активном центре фермента путем координации тремя аминокислотными остатками — двумя остатками гистидина 1118-69 и Н18-196 и одним глутамат-ионом С1и-72. Четвертая координата (для ионов цинка характерна тетраэдрическая зр -конфигурация координационных связей) направлена в комплексе фермент — субстрат на карбонильную группу гидролизуемой пептидной связи. Фиксация С-концевой части гидролизуемого пептида в активном центре обеспечивается в первую очередь взаимодействием с двумя остатками аргинина — Aгg-145 и Arg-127 и кластером гидрофобных Рис. 62. <a href="/info/100820">Схема активного центра</a> карбоксипептидазы А (остаток Туг 198 на схеме не изображен) фермента, <a href="/info/1652849">катализирующего гидролитическое</a> отщепление С-концевого аминокислотного фрагмента от полипептидов. <a href="/info/362175">Фермент абсолютно</a> специфичен к Ь-<a href="/info/1009789">конфи-гурации</a> отщепляемого аминокислотного остатка и резко преимущественно <a href="/info/1813080">катализирует отщепление</a> остатков <a href="/info/1304271">гидрофобных аминокислот</a>. Гидролиз в этом случае протекает по <a href="/info/1776504">механизму электрофильного катализа</a> и требует <a href="/info/220523">участия иона</a> цинка — в белке какие-либо группы, способные выступать в роли <a href="/info/1473574">электрофиль</a>-ных катализаторов, отсутствуют. Ион цинка фиксирован в <a href="/info/99728">активном центре фермента</a> путем координации тремя аминокислотными остатками — двумя остатками гистидина 1118-69 и Н18-196 и одним глутамат-ионом С1и-72. Четвертая координата (для ионов цинка характерна тетраэдрическая зр -<a href="/info/499986">конфигурация координационных</a> связей) направлена в <a href="/info/574398">комплексе фермент</a> — субстрат на <a href="/info/7246">карбонильную группу</a> <a href="/info/466952">гидролизуемой</a> <a href="/info/7320">пептидной связи</a>. Фиксация С-<a href="/info/916047">концевой части</a> гидролизуемого пептида в <a href="/info/5969">активном центре</a> обеспечивается в первую очередь взаимодействием с двумя остатками аргинина — Aгg-145 и Arg-127 и кластером гидрофобных

    Для карбоксипептидазы А (КПА) из поджелудочной железы быка известны и трехмерная структура [1—3], и полная аминокислотная последовательность [4]. Роль существенно важного металла установлена менее определенно, но она доступна изучению с помощью разнообразных спектроскопических [5, 6] и кинетических [7, 8] методов. Следовательно, этот фермент можно включить во все увеличивающийся список белков, для которых возможно провести корреляции структуры и функции. Любой предлагаемый механизм катализа под действием КПА должен теперь учитывать как накопленные химические данные, так и взаимодействия, наблюдавшиеся при структурном исследовании кристаллов комплекса карбоксипептидазы с модельным субстратом глицил-ь-тирозином [3, 9]. [c.504]

    Какие функциональные группы активного центра фермента взаимодействуют с субстратом и участвуют в катализе С какими группами активного центра карбоксипептидазы связываются  [c.346]

    По-видимому, можно без опасений считать, что молекула субстрата в активном центре прямо взаимодействует с ионом цинка. Ярко выраженная зависимость ферментативной реакции от природы металла, чувствительность электронного спектра и спектра кругового дихроизма 0 +-фосфатазы и спектра ЭПР Си +-фос-фатазы к фосфату и арсенату — все эти факты делают маловероятным косвенное участие ионов цинка в катализе. Кроме того, прямое присоединение субстрата к иону цинка было уже надежно установлено кристаллографически [78] для другого фермента—карбоксипептидазы (гл. 15). [c.641]

    Электростатическое взаимодействие фермент-субстрат играет положительную роль также и в катализе карбоксипептидазой А, которая специфически отщепляет аминокислоты от С-конца пептидов и полипептидных цепей белков. Заряженная карбоксильная группа концевого аминокислотного остатка при образовании комплекса Михаэлиса электростатически взаимодействует с положительно заряженной гуанидиновой группой Arg-145 (см. схему на стр. 19 и рис. 7). Метилирование концевой карбоксильной группы, которое элиминирует электростатическое взаимодействие фермент—субстрат, практически полностью тормозит катализ карбоксипептидазой А [17]. [c.46]

    Для синтеза аффинного сорбента, соответствующего специфичности данного фермента, лиганд (субстрат или его аналог) присоединяют к инертной матрице (макропористые гидрофильные гели, синтетические полимеры, неорганические носители). Для уменьшения пространственных трудностей при взаимодействии фермента с матрвдей лиганд присоединяют к носителю через промежуточное звено (вставку, ножку, спейсер). Присоединение лигандов к поперечносшитой агарозе — сефарозе обычно проводят, активируя ее бромцианом (см. с. 91). Связывание с сефарозой, активированной бромцианом, л-амино-бензилянтарной кислотой, используемой в качестве лиганда, обеспечивает взаимодействие сорбента с каталитическим центром только карбоксипептидаз благодаря сходству лиганда с субстратами карбоксипептидазы  [c.82]


    Этим функции белка как фермента или апофермента скорее всего не исчерпываются. Все рассмотренные ме-чанизмы предполагали достаточно статичное расположение функциональных групп белка в активном центре Это не совсем верно. Взаимодействие с субстратом нередко сопровождается изменением конформации белковой молекулы, и согласно теории, выдвинутой Кошландом, направленные конформационные изменения белка являются важным фак1чэром ферментативного превращения. В отдельных случаях такие изменения зарегистрированы с помощью рентгеноструктурного анализа. Например, карбоксипептидаза А была подвергнута рентгеноструктурному анализу как в отсутствие субстрата, так и в комплексе с глицил-1/-тирозином. Полость, в которой находится активный центр, существенно сужается при связывании этого субстрата, т.е, наблюдается отчет ливый конформационный переход. Кроме того, широко дискутируется и имеет в отдельных случаях убедительные подтверждения гипотеза, согласно которой фермент фиксирует субстрат в конс юрмации, существенно более близкой по своей геометрии к активированному комплексу реакции, чем конформация субстрата, преобладающая у несвязанных молекул. Это, естественно, должно приводить к снижению активационьюго барьера реакции и способствовать существенному ускорению превращения. [c.208]

    Взаимодействию фермента с субстратом предшествует сближение и ориентация субстрата по отношению к активному центру фермента. Затем образуются фермент-субстратные комплексы, реальное существование которых может быть зафиксировано различными способами. Наиболее наглядным и эффективным является метод рентгеноструктурного анализа. В качестве примера можно привести идентификацию фермент-субстратного комплекса карбоксипептидазы А и ее субстрата глицил-ь-тирозина. Метод дает возможность не только установить сам факт образования комплекса, но и определить типы связей. Более простым, но достаточно эффективным методом является спектральный анализ фермента и соответствующего фермент-субстратного комплекса. Таким образом, бьши, в частности, идентифицированы фермент-суб-стратные комплексы для ряда флавиновых ферментов. В последние годы широкое распространение получило применение синтетических субстратов, благодаря которым можно моделировать ряд стадий ферментативного процесса, в том числе и связанных с образованием фермент-субстратного комплекса. [c.69]

    В последнее время появилась возможность изучать физические свойства белков такими методами, как температурный скачок, которые позволяют исследовать процессы с временами, соизмеримыми с временами каталитического превращения субстрата на ферменте, так что стало возможным непосредственно установить взаимосвязь между скоростями субстратзависи-мых конформационных изменений и скоростями самой реакции. В настоящее время имеется ун е несколько свидетельств в пользу существования изомеризации ферментов и ферментсубстратных комплексов, которые могут представлять собой конформационные изменения такого рода [49—52]. Скорость мономолекулярной изомеризации глицеральдегид-З-фосфатдегидрогеназы характеризуется константой порядка 1 с и является слишком медленной, чтобы этот процесс имел место при каждом обороте фермента по-видимому, этот процесс относится к явлениям контроля ферментативной активности. Рентгеноструктурный анализ лизоцима [28], химотрипсина [54] и карбоксипептидазы [55] дал прямое доказательство существования изменений в конформации фермента при взаимодействии с субстратами или ингибиторами. Гемоглобин, хотя и не является ферментом, но может быть поучительным примером использования всех этих методов для демонстрации конформационных изменений при взаимодействии этого белка с кислородом [56]. [c.243]

    Доказательства конформационных изменений в молекуле фермента при взаимодействии с субстратом получены методами ядер-ного магнитного резонанса и рентгеноструктурного анализа. Например, при взаимодействии карбоксипептидазы Л с плохими (отличающимися по химической структуре) субстратами происходит перемещение остатков двух аминокислот тирозина и глутаминовой кислоты, которые предположительно участвуют в каталитическом процессе, на 15 и 2А соответственно. Этих перемещений достаточно для проявления макрофизических изменений растрескивания кристаллов фермента при добавлении субстрата. [c.27]

    Предполагаемся, что многие ферменты в отсутствие субстратов находятся в неактивном состоянии и что функциональные группы их активных центров не ориентированы в пространстве надлежащим образом для взаимодействия с комплементарными группами субстрата. Однако при связывании специфического субстрата происходит такое конформационное изменение фермента и, следовательно, его активного центра, в результате которого соответствующие К-группы центра занимают необходимое для взаимодействия с субстратом положение это обеспечивает осуществ- ление каталитического процесса. Такие индуцированные субстратом конформационные изменения называют индуцированным со--ответствием его иллюстрирует схема, приведенная на рис. 8.8. Убедительные данные, свидетельствующие о конформационных изменениях щ)и связывании субстрата, основаны главным образом иа сравнении структур фермента, полученных методом рентгеноструктурного анализа, в присутствии и в отсутствие ингибиторов. В качестве примера можно указать на соответствующие данные для карбоксипептидазы (разд. 9.3.4) и лизоцима (разд. 9.3.3). Кроме того, ряд свойств ферментов, находящихся в растворенном состоянии, указывает на различие их конформации в присутствии и в отсутствие субстратов. Например, некоторые ферменты в присутствии субстратов утрачивают способность взаимодействовать со специфическими антителами многие ферменты в присутствии специфических субстратов оказываются более стабильными в отношении тепловой денатурации, у них изменяются показатели оптического вращения, они перестают диссоциировать на субъедини-ды у некоторых ферментов изменяются седиментационные характеристики. Принято считать, что в результате индуцированного со- ответствия может увеличиваться скорость некоторых ферментативных реакций однако обусловленное этим механизмом увеличение скорости, вероятно, относительно невелико по сравнению с соответствующими эффектами, обусловленными другими механизмами. [c.288]


    Шульман н сотр. [ИЗ—115] исследовали активный центр карбоксипептидазы А путем измерения релаксации малых молекул, связанных с этим ферментом. Карбоксипептидаза является протео-литическим металлсодержащим ферментом, который катализирует расщепление С-концевой пептидной связи в пептидах и белках. Она имеет молекулярную массу 34600 и содержит 1 атом цинка на молекулу, который обусловливает каталитическую активность, но фермент остается активным при замене 20 + на ионы Мп + или Со2+ [116]. Кристаллическая структура фермента известна [117, 118]. С атомом металла координированы три белковых лиганда, и имеются свободные положения по меньшей мере еще для двух лигандов. Связывание растворителя (НгО) [ИЗ], ингибиторов [114] или фторид-иона [115] на активном центре Мп2+-фермента влияет на релаксацию связанных ядер не только потому, что белок имеет длинное время корреляции, но также вследствие наличия парамагнитного иона металла. Уширение резонансных сигналов растворителя было объяснено тем, что одна молекула воды связывается с ионом Мп2+. Как следует из измерения уширения пиков метильных или метиленовых протонов конкурирующих ингибиторов — индо-лилуксусной, г/7ег-бутилуксусной, бромуксусной и метоюсиуксус-ной кислот — и одновременного определения времен корреляции взаимодействия протонов ингибитора с металлом, релаксация определяется главным образом временем обмена комплекса белок — ингибитор. Используя известные константы Михаэлиса — Ментен и эти данные, можно определить константы скорости всех отдельных стадий реакции фермента с субстратом. [c.393]

    На основе рентгеноструктурного анализа с высоким разрешением проведено сравнение стереохимических свойств трех типов взаимодействий металл—белок. Для установления структурных и электронных факторов, ответственных за регуляцию активности иона металла, рассмотрены координационные центры металл — лиганд в белках и прослежена связь между молекулярной структурой, стереохимией и электронной структурой и биологической ролью функции иона металла. Гидро( бное взаимодействие порфиринового кольца гемоглобина и миоглобина рассмотрено по данным измерений магнитной восприимчивости, спектроскопии парамагнитного резонанса и исследования поляризационных спектров поглощения монокристаллов. С точки зрения электронной конфигурации (1-орбиталей и геометрии координации обсуждается взаимодействие замещенных ионов металлов в карбоксипептидазе А с карбонильной группой субстратов при гидролизе пептидов. Предполагается, что спектральные изменения, зависящие от pH и наблюдаемые в спектре электронного поглощения, замещенного иона Со(П), каталитически активного в карбоангидразе, обусловлены образованием упорядоченной структуры растворителя вблизи иона Со(И), Корреляция между молекулярной структурой, определенной методами рентгеноструктурного анализа, и электронной структурой координационного центра металл — лиганды, оцененной из спектроскопических данных, указывает на происхождение структурной регуляции реакционной способности иона металла в белках и ферментах. [c.123]

    Различают несколько типов специ(]щчности абсолютная, абсолютная групповая, относительная групповая и стереохимическая, или оптическая. Абсолютной специфичностью обладают ферменты по отношению только к данному субстрату и не взаимодействуют даже с близкородственными молекулами. Такая специфичность хара р-на, например, для уреазы, асцартазы, аргиназы. Абсолютная групповая специфичность выражается в том, что фермент может действовать на ряд близких субстратов, имеющих о ий тип строения, причем имеет значение не только определенный тнп связи, но и структура прилегающего к ней радикала или радикалов. Примером могут служить глюкозидазы, карбоксипептидаза. [c.128]

    Металлы входят в активный центр металлофермента и участвуют в образовании фермент-субстратного комплекса, образуя координационные связи с субстратом. Возможно, что ион металла играет роль мостика при образовании фермент-субстратного комплекса. Субстрат взаимодействует при этом с металлом по крайней мере двумя группами, расположенными по обе стороны от связи, расщепляемой при ферментативной реакции. В качестве примера можно рассмотреть механизм действия карбоксипептидазы А, специфичной по отношению к С-концевой аминокислоте, имеющей свободную карбоксильную группу. В этом случае в образовании хелатного комплекса принимает участие концевая карбоксильная группа и карбонильный кислород пептидной связи. Металл — цинк, оттягивая на себя электроны, ослабляет пептидную связь. На основании этой гипотезы структура фермент-субстратного комплекса в случае карбокси-лептидазы А может быть представлена следующим образом  [c.245]

    Метод теоретического конформационного анализа был использован для изучения невалентных взаимодействий а-химотрипсина с рядом простейших субстратов, лизоцима с триацетилглюкозамином, рибонуклеазы с уридин- 2, З -циклофосфатом, карбоксипептидазы А с пептидными и эфирными субстратами. К сожалению, в силу ограниченной точности этот метод не всегда дает однозначный ответ о наличии напряжений в комплексе. Тем не менее обилий вывод из проведенных теоретических исследований состоит в следуюш ем. Хотя образование комплекса Михаэлиса сопровождается конформационными изменениями, однако посадка субстрата не вызывает в молекулах субстрата и фермента ни избыточного конформационного напряжения, ни образования какой-либо принудительной конформации. На а-химотрипсине было показано, что в предкаталитической стадии структурные элементы его активного центра находятся в ненапряженном состоянии. [c.423]

    Примером электростатического взаимодействия может служить связывание гли-цил-Ь-тирозина с карбоксипептидазой А-протеолитическим ферментом, который отщепляет С-концевые остатки аминокислот. Отрицательно заряженная концевая карбоксильная группа дипептидного субстрата взаимодействует с положительно заряженной гуанидиниевой группой аргини-нового остатка на ферменте. Расстояние между этими двумя противоположно заряженными группами составляет 2,8 Л  [c.122]


Смотреть страницы где упоминается термин Карбоксипептидаза взаимодействие фермент субстрат: [c.374]    [c.345]    [c.207]    [c.215]    [c.504]    [c.510]    [c.102]    [c.127]    [c.127]   
Неорганическая биохимия Т 1 _2 (1978) -- [ c.523 ]




ПОИСК





Смотрите так же термины и статьи:

Карбоксипептидаза

Субстрат

Фермент субстрат



© 2025 chem21.info Реклама на сайте