Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электролиз внешний

    В методе внутреннего электролиза внешнего источника тока не требуется. Здесь используется способность металлов с более положительным электродным потенциалом выделяться в свободном виде из растворов их солей под действием металлов с меньшим значением стандартного потенциала (менее благородного). Пластинка менее благородного металла, являющаяся анодом, соединяется с платиновым катодом и, таким образом, выделение анализируемого благородного металла происходит на платине. При небольшом содержании определяемого элемента осаждение металла на платиновом катоде происходит без каких-либо осложнений, но при больших концентрациях наряду с осаждением на катоде может происходить некоторое выделение металла на аноде. Чтобы исключить этот процесс, анод покрывают тонкой пленкой из коллодия или катодное и анодное пространство разделяют пористой перегородкой. [c.250]


    Электрохимические процессы имеют большое практическое значение. Электролиз используется в металлургии легких и цветных металлов, в химической промышленности, в технологии гальванотехники. Химические источники тока широко применяются в быту и промышленности. Электрохимические процессы лежат в основе многих современных методов научного исследования и анализа. Новая отрасль техники — хемотроника — занимается созданием электрохимических преобразователей информации. Одной из важнейших задач электрохимии является изучение коррозии и разработка эффективных методов защиты металлов. В неравновесных условиях в растворе электролита возникают явления переноса вещества. Основные виды переноса диффузия — перенос вещества, обусловленный неравенством значений химических потенциалов внутри системы или между системой и окружающей средой конвекция — перенос вещества под действием внешних механических сил миграция — перенос заряженных частиц в электрическом поле, обеспечивающий электрическую проводимость электролитов. [c.455]

    В процессе электрохимического гальванического покрытия электробатареи или другие источники тока поставляют электроны, необходимые для перевода ионов металлов в атомы, которые образуют слой металла на поверхности предмета. Гальванопокрытие производят для защиты поверхности от механических повреждений или для придания ей красивого вида. Покрытия дешевых украшений тонким слоем золота делает их более привлекательными. Хромовое покрытие бамперов автомобилей защищает их и улучшает внешний вид. Ячейка, используемая для проведения таких химических изменений, состоит из двух электродов (анода и катода), раствора ионов и источника электричества. Гальванопокрытие - одна из форм электролиза, процесса, использованного вами в гл. II, разд. Г.4. [c.532]

    Электрогравиметрия основана на использовании процесса электролиза. Наложение внешнего напряжения на электроды электрохимической ячейки приводит к определенным электрохимическим реакциям при прохождении тока. Проходящий ток линейно зависит от разности вн— эл и подчиняется закону Ома  [c.179]

    Появление перенапряжения увеличивает необходимое для электролиза внешнее напряжение и требует большой мощности источника тока. При этом возрастают потери электрической энергии. [c.329]


    Выше был рассмотрен процесс электролиза, вызываемый внешней э. д. с. источника тока. Наличие источника тока не является, однако, обязательным. Можно провести электролиз так, чтобы анализируемый раствор с погруженными в него электродами представлял собой гальванический элемент с собственным током, за счет которого и происходит электролитическое осаждение определяемого металла на взвешенном катоде. [c.448]

    При анализе методом внутреннего электролиза внешний источник тока не требуется. В стакан заливают анализируемый раствор и погружают в него электродную пару (катод предварительно взвешивают). Электролиз ведут при 60° С в течение 60—70 мин. По окончании электролиза катод промывают, высушивают и взвешивают. [c.218]

    Как легко видеть, поляризационная э. д. с. в пределе совпадает с э. д. с. кислородно-водородной газовой цепи, термодинамическое значение которой для водных растворов независимо от pH равно 1,23 в при 25° С. Соответственно этому можно ожидать, что резкий подъем силы тока при электролизе водного раствора, когда на нерастворимых электродах происходит выделение газообразного кислорода и водорода, должен наступать лишь после того, как внешняя э. д. с. источника превысит 1,23 в. В действительности минимально необходимое для стационарного режима электролиза внешнее напряжение заметно больше. Это напряжение носит название напряжения разложения и для кислородных кислот, растворов щелочей и тех нейтральных солей, электролиз которых, как и в предыдущих случаях, сопровождается выделением О, и Hj (например, [c.172]

    Внешняя 3. в. с. В процессе электролиза, несмотря [c.428]

    В чем сущность внутреннего электролиза и каковы преимущества его перед внешним электролизом  [c.457]

    Если электрический ток пропускают через расплав или раствор соли, прохождение тока осуществляется ионами, мигрирующими в противоположных направлениях. На катоде, где электроны поступают в соляную среду, катионы металла восстанавливаются до свободного металла. На аноде, где электроны перетекают из соли обратно во внешнюю цепь, анионы окисляются с образованием свободных неметаллических элементов. Этот процесс называется электролизом. Фарадей установил строгое соотношение между величиной заряда, прошедшего через прибор для электролиза, и количественной мерой происходящего при этом химического превращения 96485 Кл заряда должны приводить к выделению 1 моля каждого продукта, в котором превращение затрагивает 1 электрон на ион. Величина, равная 96485 Кл, представляет собой просто заряд 1 моля электронов и называется фарадеем (1Г) заряда. [c.54]

    Для электролиза расплавов характерно протекание процесса при высоких температурах. В большинстве случаев необходимые температуры создаются за счет тепла, генерируемого в электролизере проходящим током. Это исключает необходимость внешнего подогрева и позволяет осуществить специфический для электролиза расплавов режим с гарниссажем на стенках электролизера, предотвращающим взаимодействие электролита и продукта электролиза с футеровкой. [c.465]

    Электролиз — возникновение химических превращений в электрохимической системе при пропускании через нее электрического тока от внешнего источника. Путем электролиза удается провести [c.513]

    Общее уравнение при наложении внешнего напряжения для любого реального процесса электролиза имеет вид  [c.179]

    До установления равновесия практически вся медь будет количественно выделена из раствора. Этот метод называют методом внутреннего электролиза. Он прост в выполнении, так как не требует внешнего источника тока, и селективен. [c.180]

    При электролизе ток от внешнего источника тока протекает через электрохимическую ячейку (электролизер). [c.380]

    Система электродов, погруженных в электролит, по которому проходит ток от внешнего источника, образует электролитическую ячейку. Процесс разложения электролита и превращения вещества на электродах называют электролизом. Следует подчеркнуть, что нельзя отождествлять понятия анод и отрицательно заряженный электрод. [c.36]

    В процессе электролиза на электроде, присоединенном к положительному полюсу внешнего источника тока, протекает реакция окисления, т. е. он является анодом. Отрицательно заряженный электрод, на котором протекает реакция восстановления, является катодом. Катионы ( + ) перемещаются к катоду (—), а анионы (—) — к аноду (-Ь). [c.36]

    Наибольшее применение в фильтр-прессных электролизерах получили биполярные электроды с выносными перфорированными листами (рис. 1У-3,ж ). Средний сплошной лист такого электрода служит для разделения соседних ячеек и крепления посредством анкеров выносных перфорированных электродов. Газы, выделившиеся при электролизе на внешней стороне выносного электрода, отводятся через отверстия перфорации на обратную сторону в промежутки со средним листом электрода. Такое устройство электродов позволяет почти вплотную приблизить выносные электроды к диафрагме. [c.117]


    Если через электрохимическую ячейку, собранную так же, как описано выше, пропускать ток постоянной силы, стабилизировав его каким-либо внешним устройством (описание см. ниже), потенциал рабочего электрода начнет весьма быстро смещаться в зависимости от его полярности в более положительную (в более отрицательную) сторону до тех пор, пока не достигнет значения, при котором возможно протекание той или иной электродной реакции. В аналитической практике состав раствора подбирают, чтобы эта реакция отвечала электролизу анализируемого вещества. [c.255]

    В кулонометрическом варианте метода в предварительно приготовленную смесь растворов добавляют воду до обесцвечивания раствора, а затем электролитически высвобождают связанный иод анодным окислением иодид-иона. Массу генерированного иода определяют по силе тока между двумя индикаторными электродами. Иными словами, после добавления воды ведут электролиз раствора до тех пор, пока в цепи индикаторных, слабо поляризованных от внешнего источника э. д. с. электродов, не установится заданный ток, возникающий вследствие окисления-восстановления пары 2I- l2. [c.269]

    Цель работы — ознакомление с процессом меднения и изучение влияния состава электролита и режима электролиза на выход по току меди, потенциалы катода и анода, качество (по внешнему виду) и физико-химические свойства медных покрытий. [c.33]

    Уменьшение энтропии химически реакционноспособных абиогенных систем может быть достигнуто, например, генерацией внутри системы энергоемких частиц электролизом (за счет свободной энергии электричества) или светом (фотолизом), а также достаточно интенсивным обменом с внешней средой веществом или теплотой. [c.298]

    Ванны строят -на силу тока 2000—8000 а, их включают либо по системе Уокера, либо попарно в одном блоке. Перемешивание раствора осуществляется посредствам перетекания его со скоростью 18—20 л мин. Поскольку электролиз ведут без внешнего подогрева, в каскад включают последовательно 3—8 ванн. Размеры ванн и электродов аналогичны применяемым при рафинировании меди. Аноды толщиной 25—35 мм с плечиками отливают на карусельной машине они рассчитаны на срок службы 6—14 суток. Количество анодного остатка достигает 22—25%. Катоды толщиной 1—2 мм обычно отливают на гладкую чугунную плиту, обрезают и припаивают к катодным штанга М. Срок наращивания катодов 5 7 суток. [c.264]

    Качество покрытия оценивают на основании внешнего осмотра, часто — при увеличении объекта. Выходы по току определяют с помощью медного кулонометра. Электролиз ведут в течение времени, достаточном для получения 15 мкм покрытия из расчета 100 % выхода по току (условно). [c.25]

    Образцы для покрытия изготавливают из стальной ленты, согнув ее в виде трубки, диаметром 10 мм и длиной 50—70 мм и завешивают в электролизер в вертикальном положении. Продолжительность электролиза рассчитывают, исходя из средней толщины покрытия 9 мкм, учитывая внешнюю и внутреннюю поверхности образцов. После окончания электролиза и промывки образцов производят визуальный осмотр покрытия и качественную оценку кроющей способности. [c.25]

    При протекании электрического тока на границе металл — раствор образуется тонкая плотная пленка барьерного типа (рис. 13.1), рост которой происходит в результате миграции в ней ионов алюминия навстречу ионам кислорода. Толщина барьерного слоя (0,01—0,1 мкм) остается приблизительно постоянной в течение электролиза, так как внешняя его сторона подвергается растворяющему воздействию электролита по химической реакции  [c.80]

    Как этот процесс, так и направление тока в цепи обратны тем, которые возникают под влиянием внеи ней э. д. с. при электролизе. Так как при электролизе катионы движутся и разряжаются на электроде, присоединенном к отрицательному полюсу внешнего источника тока (с определенной э.д. с.), от которого электрод получает электроны, этот электрод называется катодом второй эле1 трод, на котором разряжаются анионы (окисляются, т. е. отд 1ЮТ ему электроны), носит название анода. [c.427]

    Итак, в результате выделения на электродах продуктов электролиза в системе возникает э. д. с., обратная внешней э. д. с. источника тока. Это явление называется электрохимической поляризацией, а возникающая обратная э. д.. с. — электродвижущей силой по.глризации. В существовании ее нетрудно убедиться, если, выключив во время электролиза источник тока, соединить проводником электроды с клеммами гальванометра. При этом стрелка гальванометра отклонится в сторону, противоположную той, в которую она отклонялась под влиянием внешней э. д. с. при электролизе. [c.427]

    Величина напряжения разложения более или менее точно может быть определена для данного электролита определенной концентрации лишь в случае выделения на электродах чистых твердых веществ. Если при электролизе на электродах образуются гвердые или жидкие растворы и, особенно, при выделении газов, напряжение разложения зависит от формы и размеров эл( ктродов, характера их поверхности, условий удаления газов и многих других обстоятельств, подчас не учитываемых Поэтому величина напряжения разложения не может служи ь однозначной характеристикой для любого электролита при различных условиях, так же как и величины потенциалов разряда ионов. Величина э.д.с. электрохимической поляризании при электролизе отражает э.д.с., реально возникающую при приложении внешней разности потенциалов и противодействующую электролизу независимо от того, протекает электролиз или он подавлен э.д.с. электрохимической поляризации. В частном случае возникающая на электродах предельная поляризация может быть как раз лишь незначительно меньшей, чем приложенная разность потенциалов. Тогда эта разность равна сумме потенциалов разряда ионов (напряжению разложения). [c.615]

    Протекание электрического тока через электролиты приводит к их электролизу, при котбром химическая реакция поддерживается за счет электрической энергии внешнего источника. [c.78]

    Гальванические покрытия. Припщшы получения гальванических покрытий основаны на осаждении на поверхности защищаемых металлов катионов из водпых растворов солей при пропускании через них постоянного электрического тока от внешнего источника. Защищаемый металл при этом является катодом, а анодами служат пластины осаждаемого металла (растворимые аноды) либо пластины графита или металла, нерастворимого в электролите (нерастворимые аноды). В первом случае при замыкании электрической цепи металл анода растворяется, а из раствора на катоде выделяется такое же количество металла, так что концентрация раствора соли в процессе электролиза практически не изменяется. При проведении процесса с нерастворимыми анодами постоянную концентрацию раствора поддерживают периодическим введением требуемых количеств соответствующей соли. [c.319]

    По направлению взаимного превращения электрической и химической форм энергии различают две группы электрохимических си- стем. При электролизе за счет внешней электрической энергии возникают химические реакции. Переход энергии химического процесса в электрическ.ую осуществляется в химических источниках тока (галь-ванические элементы, аккумуляторы). [c.454]

    При электролизе и эксплуатации химических источников тока через электрохимические системы протекает электрический ток. При этом равновесное состояние Ох + ге" Нес , существующее на электроде в отсутствие внешнего тока, нарушается. В зависимости от направления тока электродная реакция может идти в катодном Ох + + 26 Нес или анодном Нес1-> Ох + ге направлениях. Мерой скорости электрохимической реакции является плотность тока — сила тока, отнесенная к единице площади поверхности электрода. Если в уравнении (162.3) массу вещества, участвующего в реакции, выразить в г-ионах, то скорость реакции будет [c.498]

    Олово — никель. Сплав олово — никель, содержащий 60 — 65% Зп, обладает высокой антикоррозионной стойкостью и хорошими декоративными свойствами. Этот сплав представляет собою интерметаллическое соединение (Зп—N1), которое можно получить только электролитическим способом. Электролитическое покрытие этим сплавом имеет красивый внешний вид (розовый оттенок), обладает повышенной твердостью и износостойкостью и при определенных условиях электролиза получается блестящим непосредственно из ванны без полировки. Покрытие наносится с защитнодекоративной целью на изделия из меди и ее сплавов пли из стали с медным подслоем взамен хромирования и никелирования, в некоторых случаях взамен лужения при повышенных требованиях к механическим свойствам поверхности (твердость, износостойкость), а также взамен серебрения и палладирования в производстве печатных плат. [c.437]

    Д.. 1я осу[цсствлепия электролиза к отрицательному полюсу внешнего исгочиика электричества присоединяют электрод, па котором будет происходить реакция восстановления (т. е. катод), а к положительному полюсу — электрод, на котором будет происходить реакция окисления (т. е. анод), и погружают нх в раствор (или расплав) электролита. Естественно, что материал катода и анода должен быть проводником, чаще всего применяют металлические электроды, но используют также электроды из графита, угля и других проводниковых материалов. [c.207]

    Анализ основан на зависимости вольт-амперной характеристики гальванического элемента (электрохимической ячейки) от концентрации определяемого компонента в газовой смеси, находящейся в динамическом равновесии с электрохимической системой ячейки и определяющей значение окислительно-восстановн-тельного потенциала раствора электролита и течение электродных процессов. На этой зависимости базируются две группы методов определения концентрации компонентов смесей газов и паров 1) с приложением внешнего поляризующего напряжения к электродам ячейки и 2) без него (с внутренним электролизом). [c.612]

    К первой группе относятся потенциометрический метод (изменение окислительно-восстановительного потенциала раствора электролита, омывающего один из электродов ячейки, обусловленное реакцией с участием определяемого компонента газовой смеси и зависящее от его концентрации мерой концентрации является изменение э. д. с. ячейки), амперо метрический метод (в деполяризационном его варианте используется зависимость силы диффузионного тока, возникающего в поляризованной ячейке под деполяризующим действием определяемого компонента, от концентрации этого компонента газовой смеси) и кулонометрический метод (тот же амперометрический метод, но осуществляемый в услопиях количественного проведения электрохимической реакции перевода определяемого вещества газовой смеси в другую форму или другое соединение мерой концентрации является количество израсходованного на реакцию электричества или, при непрерывном стабилизированном подводе контролируемой газовой смеси, ток во внешней цепи ячейки). Кулонометрические ЭХ-газоанализаторы обычно выпускаются как автоматические титрометры непрерывного действия с так называемой электрохимической компенсацией. Мерой концентрации определяемого компонента газовой смеси служит в этих приборах ток электролиза, выделяющий из раствора электролита (в котором растворяется определяемый газ) титрант в сте-хиометрических количествах, что обеспечивается электрометрическим измерением точки эквивалентности и автоматическим управлением током электролиза. [c.612]

    Электролиз иногда можно осуществить без наложения внешнего напряжения. Электрический ток в данном случае возникает за счет энергии гальванического элемента, состоящего из платинового катода и анода из металла, подобранного таким образом, чтобы при погружении в исследуемый раствор возникла разность потенциалов. Например, если в раствор Си304 погрузить платиновый и цинковый электроды, то при замыкании цепи медь будет выделяться на платиновом катоде, а цинковый лнод — растворяться  [c.180]

    Опыт 2. Получение меди при электролизе растворов соединений (электролитическая очистка меди). Для проведения опыта используйте электролит на основе USO4. В качестве катода возьмите железную пластинку, а в качестве анода — черновую медь. Пластинку меди предварительно протравите в азотной кислоте. По окончании опыта электроды промойте и высушите. Катод оставьте на воздухе. Объясните изменение внешнего вида осадка электролитической меди. [c.164]

    Однако процессы (1) и (2) обратимы. Поэтому выделившийся на катоде водород может снова переходить в раствор в виде ионов, отдавая электроны платиновому проводнику. Эти электроны по проводу поступают на другой электрод, содержащий кислород, и равновесие (2) смещается влево. Таким образом, при электролизе возникает гальванический элемент, ток которого направлен в сторону, обратную движению тока от внешнего источника. Поэтому ток от внешнего источника будет идти через электролит только в том случае, если приложенное напряжение будет достаточно для определенного химического процесса, а именно для электролитического разложения раствора или для образования ионов из 1к1ате-риала электрода. Необходимое для этой цели напряжение называется напряжением разложения и зависит, прежде всего, от состава раствора. [c.191]

    При прохождении постоянного электрического тока через растворы электролитов идет электролиз, в результате которого на одном из электродов выделяется большая масса вещества — макрополиионы, а на другом происходит выделение противоионов , масса которых весьма мала, т. е. наблюдается внешнее сходство с электрофорезом дисперсных систем. [c.196]

    К 100 см электролита № 1 добавляют 3—5 см 0,1 н. раствора Си304. Электролиз проводят при плотности тока 100 А/м в течение 15—20 мин с применением медного катода. Сравнивают внешний вид покрытия с покрытиями, полученными нз того же электролита, но в отсутствие примеси меди. [c.26]


Смотреть страницы где упоминается термин Электролиз внешний: [c.171]    [c.195]    [c.171]    [c.488]    [c.208]    [c.46]    [c.200]   
Радиохимия и химия ядерных процессов (1960) -- [ c.134 ]




ПОИСК







© 2025 chem21.info Реклама на сайте