Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Змеевики вторичной

    Определяют количество тепла (С 4, кДж/ч), воспринимаемого змеевиком вторичной камеры [c.164]

    Определяют количество тепла Qi, ккал/ч), воспринимаемого змеевиком вторичной камеры  [c.175]

    Вторичное сырье с низа колонны К — 1 забирается печным насосом и направляется в реакционные змеевики печей (их две. [c.56]

    В модернизированных крупнотоннажных УЗК (типа 21 — 10/ 1500 для создания условий, гарантирующих получение электродного кокса стабильного по качеству, предусмотрен подвод дополнительного тепла в коксовые камеры в виде паров тяжелого газойля коксования. Для этой цели часть тяжелого газойля, отбираемого с аккумулятора К — 1, после нагрева в специальных змеевиках печи до температуры 520 °С подают в камеры вместе со вторичным сырьем. Подача перегретого тяжелого газойля в камеры продолжается и после прекращения подачи сырья в течение 6 часов. [c.59]


    Мазут с низа основной ректификационной колонны 10 насосами прокачивается через теплообменники для подогрева нефти и затем через холодильники выводится из установки. Балансовое количество стабильной фракции н. к.— 180 °С при 200 °С поступает в блок вторичной перегонки бензина. Часть конденсата расходуется на орошение колонны 10. Циркулирующая флегма с низа колонны вторичной перегонки бензина прокачивается через змеевик печи и в паровой фазе возвращается в колонну. Фракция 85—180°С с низа колонны направляется в отпарную колонну для дополнительной отпарки. С верха второй колонны блока вторичной перегонки отбирается фракция н. к.—62°С, которая проходит конденсатор и затем направляется в емкость. Часть конденсата подается в колонну для острого орошения, а балансовый избыток после [c.78]

    Коэффициент теплоотдачи в изогнутых трубах (например, в трубчатых змеевиках) больше, чем в прямолинейной трубе. Это объясняется увеличением турбулизации потока, вызванным возникновением в поперечном сечении трубы вторичной циркуляции. [c.70]

    Технологическая схема одной из существующих установок вторичной перегонки бензина приведена на рис. П-5. Бензиновый дистиллят широкого фракционного состава, например от температуры начала кипения и до 180 °С, насосом 37 прокачивается через теплообменники 24, 31 -л 34 ъ подается в первый змеевик печи 4, а затем в ректификационную колонну 3. Головной продукт этой колонны — фракция н. к. — 85 °С, пройдя аппарат воздушного охлаждения 5 и холодильник 6, поступает в приемник 7. Часть конденсата насосом 8 подается как орошение на верх колонны 3, а остальное количество — в колонну 9. Снабжение теплом нижней части колонны 3 осуществляется циркулирующей флегмой (фракция 85— 180°С), прокачиваемой насосом 2 через второй змеевик печи 4 и подается в низ колонны 3. Остаток с низа колонны 3 направляется насосом 1 в колонну 20. [c.18]

    При включении горелки в эксплуатацию струей топливного газа, выходящего из сопла, создается разрежение в инжекторе и подсасывается первичный атмосферный воздух. Количество инжектируемого воздуха можно изменять вращением регулятора. Из инжектора газ и воздух поступают в смеситель, где обеспечивается интенсивное перемешивание и образуется однородная газовоздушная смесь. Энергией движения газовоздушной смеси подсасывается дополнительный вторичный атмосферный воздух, который проходит через отверстия короба в полость ДВОЙНОГО днища горелки и затем в кольцевой зазор между выходным насадком инл ектора и амбразурой в горелочном камне. В результате интенсивного горения газовоздушной смеси на поверхности огнеупорной панели последняя раскаляется н излучает тепловую энергию на трубчатый змеевик печи. [c.64]


    Износ печных труб по внутренней поверхности наиболее часто возникает в змеевиках печей установок АТ, АВТ, ВТ (первичная переработка нефти), а также установок термокрекинга, гидроочистки, риформинга и других установок (вторичная переработка углеводородного сырья). По заводским данным, количество замененных печных труб вследствие износа внутренней поверхности составляет около 25—40% от общего числа замененных труб в течение года. [c.146]

    При техническом пиролизе в змеевике трубчатой печи глубина процесса (конверсия) может и не достигать 100%, т. к. процесс протекает с конечной скоростью, требует подвода большого количества тепла. Вместе с тем технический процесс сопровождается вторичными реакциями уплотнения. Все это должно быть учтено при моделировании технического процесса. Мы рассмотрим поэтому методы получения кинетических уравнений и математического описания технического процесса. [c.249]

    Предварительно необходимо провести технологический расчет реакционного змеевика печи для нагрева вторичного сырья по методике, описанной в предыдущем разделе для печи легкого крекинга. Отличие состоит лишь в том, что вторичное сырье должно нагреваться до температуры 495—515 °С за более короткое время—120 с. Оптимальной скоростью движения сырья на входе в реакционный змеевик считается 1,0—1,6 м/с, что достигается подачей турбулизатора — водяного пара. [c.181]

    Блок вторичной перегонки бензинов рассматриваемой установки предназначен для получения фракций н. к.— 62, 62—85, 85—105, 105—140 и 140 —к. к., °С. Стабильная бензиновая фракция (н. к.— 180 °С) с низа колонны /(-S под собственным давлением направляется в колонну K-S. С верха колонны /(-5 фракция н. к. — 85 °С в паровой фазе поступает в воздушный конденсатор-холодильник T-S. После конденсации и охлаждения фракция н. к. — 85 °С направляется в емкость -4, откуда часть ее подается насосом //-б на орошение верха колонны К-3. Давление верха колонны К-3 поддерживается сбросом газообразных фракций из емкости -4 в факельную линию. Балансовый избыток фракции н. к. — 85 °С насосом Я-5 подается в колонну К-4 через клапан-регулятор расхода с коррекцией по уровню в емкости Е-4. Схемой предусматривается частичная подача фракции н. к.— 85 °С в колонну К-4 в паровой фазе. Для поддержания требуемого теплового режима колонны К-3 используется горячая циркулирующая флегма, которая забирается насосом Н-10 с низа колонны К-3, прокачивается через змеевик печи П-211 и возвращается в низ колонны. [c.27]

    Закоксовывание труб змеевиков нагревательных печей является одной из основных проблем при осуществлении процессов вторичной переработки нефти, потому что проведенные статистические исследования показали, что болт>-ше всего отказов происходит именно на печном оборудовании вследствие прогаров и деформации труб змеевиков. [c.21]

    Технологическая схема (рис. 2.12). Сырье коксования центробежными насосами 33 двумя параллельными потоками последовательно прокачивается через теплообменники 4 и змеевики печей 3I и оттуда поступает в ректификационную колонну 6 на каскадные тарелки. Контактируя с парами и газами, поступающими в колонну 6 из камер с температурой 425 °С, сырье нагревается до 400 °С. Сконденсированные высококипящие продукты коксования (рециркулят) в смеси с сырьем образуют сырье коксовых камер (вторичное сырье). С низа колонны вторичное сырье направляется на прием печных насосов 3G. Каждый из этих насосов прокачивает сырье через змеевики трубчатых печей 32, где оно нагревается до 5 0 X, а затем поступает в соответствующие камеры 1, которые работают попарно. [c.96]

    Изогнутые трубы. При движении жидкости в изогнутых трубах в потоке возникает вторичная циркуляция за счет действия центробежного эффекта. Это является причиной увеличения коэффициента теплоотдачи. Коэффициент теплоотдачи в змеевиках и коленах может быть рассчитан путем введения в формулы для прямых труб поправочного множителя  [c.110]

    Используемые печи, получившие условное название градиентных печей , имеют горелки с коротким пламенем, работающие с небольшим избытком воздуха (до 5%). Тепловая нагрузка одной печи может доходить до 9 10 ккал/ч. Для изготовления реакционного змеевика используют трубы диаметром 124,3 мм из стали с повышенной механической прочностью при рабочей температуре 760— 820° С. Массовая скорость реагентов в таком реакторе достигает 175 кг1(м сек), время контакта < 1 сек. При таких скоростях вдоль стенок труб образуется небольшой пограничный слой, в котором вследствие большого времени пребывания происходят вторичные реакции с образованием углерода. Углерод оседает на стенках реактора, уменьшая коэффициент теплопередачи и увеличивая потери давления в реакторе. [c.106]


    Трубчатая реакционная печь, предназначенная для разогрева реагентов, схематически приведена на рис. 71. Она представляет собой футерованную огнеупорньпи кирпичем 1 камеру 2 с установленным в ней змеевиком. Габариты печи длина -11,3 м, ширина - 2,3 м, высота с дымовой трубой — около 26 м. Змеевики изготовлены из центробежнолитых труб размером 168 X 12,7 мм и длиной около 10 м. Трубы соединены друг с другом приваренными с торцов литыми отводами (калачами) с толщиной стенки 20—30 мм. Змеевик 4, в котором разогревается метан, изготовлен из четьфех труб, расположенных в одной горизонтальной плоскости. Основной реакционный змеевик 3 состоит из десяти труб, смонтированных в шахматном порядке в вертикальной плоскости. В калач между змеевиками 3 я 4 вварен патрубок вдя подачи расплавленной серы. Таким образом, в змеевике 3 не происходит нежелательное соприкосновение холодного метана с нагретой серой. Змеевик вторичного подогрева реагентов 8 состоит из четырех труб. Половина труб змеевиков 3 л8 уложена на ряд вертикальных опор, а второй ряд опор поддерживает другую половину труб. Каждый ряд состоит из пяти опор две крайние из них неподвижно закреплены на фундаменте, а три промежуточные установлены на катках. Опоры сварены из массивных литых двутавровых частей с крюками под трубы, при этом на неподвижных опорах крюки заменены роликами. На боковых стенках печи снаружи смонтированы горелки 7 для сжигания природного газа. Всего каждая печь имеет 80 горелок эжекционного типа с принудительной подачей природного газа (по 40 горелок с каждой стороны в четьфех вертикальных рядах по 10 горелок). [c.143]

    На предприятиях планомерно проводятся работы по модернизации и замене морально устаревшего оборудования. Так,на многих печах установок термического крекинга, атмосферновакуумных трубчатках, установках селективной очистки масел, вторичной перегонки и других смонтированы безретурбендные спиралевидные змеевики. На ряде установок термокрекинга конвекционные змеевики с ретурбендами заменены безретурбенд-ными. На установках Л-35-11/1000 и АГФУ для увеличения скоростей продукта в змеевике подвергли модернизации печи, что позволило увеличить коэффициент теплопередачи через поверхности труб и прекратить их прогар н перегрев. [c.201]

    Вторичное сырье с низа колонны 9 забирается насосом 6 и возвращается в змеевики печи 2 и 3, в верхние трубы конвекционной секции и правые подовые и потолочные экраны. Эта часть труб относится к реакционному змеевику, здесь вторичное сырье нагревается до 490—510 °С. Во избежание закоксовывания труб этой секции в трубы потолочного экрана подают перегретый водяной пар, так называемый турбулизатор, в количестве % (масс.) на вторичное сырье. За счет подачи турбули-затора увеличивается скорость прохождения потока через реакционный змеевик. Избыток перегретого водяного пара может подаваться в отпарные колонны 10 и 11. [c.29]

    Головной продукт III из стабилизатора 5 поступает через конденсатор-холодильник 2 в емкость 9, откуда часть конденсата насосом возврашдется в колонну как орошение, остальное передается на ГФУ, а газ — к форсункам печей. Стабильный продукт частично прокачивается через змеевик печи 12 обратно в стабилизатор как теплоноситель, а избытой передается на вторичную перегонку в колонны б, 7 и S. Колонна 8 оборудована отпарной колонной 4. В стабилизаторе 5, как и в колоннах вторичной перегонки, теплоносителем являются циркулирующие через печь 12 остатки ректификационных колонн 6,7 1и 8. Головным продуктом колонны 8 является фракция 85—120° С, остатком — фракция 140—180° С. [c.318]

    Вторичное сырье с низа колонны 6 с помошью насосов 7 возвращается в печи, в верхнюю часть конвекционных труб и правые подовые и потолочные экраны. Эта часть труб относится к реакционному змеевику, и вторичное сырье нагревается в нем до 490—510 °С. Во избежание закоксовывания труб этой секции печи в трубы потолочного экрана подается около 3% (на вторичное сырье) водяного перегретого пара, который увеличивает скорость прохождения потока через реакционный змеевик. Паро-жидкостная смесь вводится параллельными потоками через четырехходовые краны в две работающие камеры 1 (две другие камеры в этот период подготавливают к рабочей части цикла). [c.74]

    Рассекатель-распределитель создает несколько зон теплообмена в камере радиации, что позволяет регулировать теплонапряженность поверхности трубчатого змеевика по его длине. Металлический каркас рассекателя-распределителя футерован шамотиым кирпичом. Внутренняя полость его разбита на отдельные воздуховоды, при этом расход воздуха, проходящего по ним, можно регулировать шиберами. В кладке граней рассекателя на двух ярусах по высоте граней сделаны каналы прямоугольного сечения для подвода вторичного воздуха из воздуховодов к настильному факелу каждой грани. [c.9]

    Такой характер коксоотложений можно объяснить следуюхцим образом. Закоксовывание нижней половины труб потолочного экрана обусловливалось, очевидно, низкой агрегативной устойчивостью и расслоением коксуемого сырья. В последуюише годы на Ново-Уфимс-ком НПЗ и других НПЗ с прямогонными остатками стали смешивать ароматизированные добавки, такие как экстракты селективной очистки масел, тяжелые газойли каталитического крекинга и другие, что существенно повысило агрегативную устойчивость сырья коксования, удлинило безостановочный пробег печей. Снижение интенсивности закоксовывания труб на участке непосредственно после ретурбенда объясняется интенсивной турбулизацией парожидкостной реакционной смеси, а в концевых трубах - увеличением доли паровой фазы в результате протекания реакций крекинга с образованием низкомолекулярных продуктов (газа, бензина), т.е. за счет химического кипения реакционной смеси. Были разработаны и внедрены рекомендации, направленные на улучшение структуры парожидкостного потока в змеевике печи и регулирование паросодержания в потоке путем увеличения диаметра трансферной линии от печи до реакторов от 100 до 150 мм, осуществлена реконструкция схемы обвязки распределительного устройства на потоке коксуемого сырья, которая заключалась в замене двух четырехходовых кранов пятиходовым краном. Изменено место подачи турбулизатора. По проектной схеме турбули-затор подавался в трубу, соединяющую подовый и потолочный экраны. Путем поиска оптимального места ввода турбулизатора было установлено, что значительно уменьшить коксоотложение можно при его подаче в первую трубу на входе вторичного сырья в печь. В результате заметно понизилось давление в трубах на входе в потолочные экраны (с 2,4 до 2,1 МПа) и на выходе из печи (с 1,1-1,2 до 0,7-0,8 МПа), повысилась доля паровой фазы, улучшилась гидродинамическая структура и уменьшилось время пребывания сырьевого потока как следствие, значительно снизилась интенсивность коксоотложения в трубах и удлинился межремонтный пробег установки. [c.71]

    Газы пиролиза, образовавшиеся в результате термического разложения и превращения предельных углеводородов в змеевике печи, содержат этилен, пропилеи и другие олефины. При медленном охлаждении газов пирслиза в трубопроводе на выходе из печи начинают протекать вторичные реакции, в связи с чем содержание этилена и пропилена снижается. Поэтому непосредственно при выходе газов пиролиза из печи устанавливают закалочные камеры 6, в которые для быстрого охлаждения газов впрыскивают водяной конденсат. [c.15]

    Устройства, закручивающие поток, включают в себя рпд геометрических устройств или вставок в трубы, которые вызывают вращение потока нри вынужденном течении и (или) вторичные течения змеевики, входные турбулиза-торы в виде скрученных лент и изогнутые вставки, размещаемые в ядре потока вдоль оси. [c.322]

    Винтер (неопубликованные данные) поставил эксперименты 110 нагреву расплавленного полиэтилена, текущего через. змеевик. Хотя известно, что в таких трубах существуют вторичные течения, и было обнаружено никакого воздействия на радиальное распре деление температур по сравнению с рас/тределением при соответствующем нвгреве 1 прямой трубе. [c.327]

    При выводе уравнения (3) вторичный поток, который, как известно, существует в коленах и змеевиках (см. 2.2,2), не учитывают. Этот вторичный поток приводит к усиле-ни[о стратификации и увеличению V. В случае, экснери-ментально исследованном в [6], для трубы с внутренним диаметром 19 мм и радиусом колена г= 0,45 м, постоянная в уравнении (3) увеличивается до 7,48, а критическая скорость V — на 17—20%. Экспериментальные данные показывают, что эффект вторичного потока следует учитывать при низких объемных паросодержаниях (е <0,5) и можно не принимать во внимание для высоких объемных паросодержаний (к >0,8). [c.404]

    На отечественных установках эксплуатируются одноблочные и двухблочные установки замедленного коксования нескольких типов, построенные по проектам институтов ВНИПИнефть и Башгипронефтехим. Принципиальная технологическая схема одноблочной установки с тремя реакционными камерами представлена на рис. 17. Первичное сырье (гудрон или крекинг-остаток) нагревается в конвекционной камере печи 2 до 370-390 °С и поотупает на каскадные тарелки ректификационной колонны 4, стекая по которым, вступает в контакт с поднимающимися навстречу парами, идущими из работающей реакционной камеры и имеющими температуру 430-450 °С. В результате массообмена тяжелая часть паров конденсируется и вместе с сырьем образует в нижней части колонны вторичное сырье с температурой 380-400 °С. С низа ректификационной колонны вторичное сырье прокачивается через реакционный змеевик нагревательной печи и с температурой 485-500 °С направляется в реакционную камеру. Температура вторичного сырья на входе в камеру на 10-15 °С ниже, что связано с потерями тепла в трансферном трубопроводе и переключающей арматуре. [c.60]

    В период 1975-1980 гг. на ряде НПЗ были введены в промышленную эксплуатацию двухблочные установки замедленного коксования типа 21-10/6 (6М) со следующими отличительными особенностями. В камеру подается т елый газойль коксования, нагретый до 515 С в отдельном змеевике печи первичного сырья. Это позволяет снизить температуру нагрева вторичного сырья и уменьшить возможность отт ожений кокса в трубах реакционных змеевиков и внести дополнитель- [c.63]

    На ряде установок замедленного коксования печи шатрового типа модернизированы в радиантных камерах установлены спиралевидные трубчатые змеевики с соответствующей переобвязкой для нагрева потоков вторичного и первичного сырья. Радиантный змеевик расположен параллельно боковым стенам, и факелы горелок находятся внутри змеевика. Потолочные трубные подвески змеевика изготовлены в виде подвижных рычажных опор, поэтому змеевик при нагревании может свободно удлиняться. Печь со спиралевидным змеевиком имеет следующие преимущества по сравнению с обычными змеевиками из прямых труб при одном и том же объеме камеры сгорания поверхность рагрева за счет дополнительного экранирования увеличивается на 24-30% спиралевидный змеевик обладает хорошей температурной компенсацией, что увеличивает его надежность потери напора в спиралевидном змеевике ниже, чем в обычной печи с прямыми поворотами повышается равномерность обогрева труб, снижается их износ и увеличиваются межремонтные периоды работы уменьшаются затраты и сокращаются сроки ремонта (отпадает необходимость в трудоемкой развальцовке труб) за счет отсутствия ретурбендов и размещения змеевика полностью внутри топочной камеры обеспечивается надежная герметизация печи, снижаются тепловые потери и увеличивается к. п. д. печи [113, 130]. Спиралевидный змеевик в потоке раскаленных газов расположен таким образом, что нагрев продукта сопровождается меньшими потерями тепла. [c.113]

    Печи подобного типа имеют тепловую мощность 20-58 МВт и в последние годы используются в различных процессах нефтепереработки, в частности, на высокопроизводительных установках АВТ [174]. Число горелок, длина труб и поверхность змеевика зависят от тепловой мощности печи. В печи ПГ18П установки 21-10/6 каждый поток для нагрева вторичного сьфья включает 68 труб размером 127 8 17250 мм, из них 40 труб из стали 15Х5М расположены в камере конвекции и соединены на сварных калачах 28 труб из стали 15Х9М расположены в камере радиации и соединены ретурбендами. Двурядное расположение форсунок [c.114]


Смотреть страницы где упоминается термин Змеевики вторичной: [c.44]    [c.86]    [c.49]    [c.58]    [c.202]    [c.56]    [c.109]    [c.247]    [c.79]    [c.298]    [c.171]    [c.126]    [c.180]    [c.97]    [c.228]    [c.83]    [c.93]    [c.96]    [c.65]    [c.68]   
Коррозия и защита химической аппаратуры ( справочное руководство том 9 ) (1974) -- [ c.131 , c.143 , c.153 , c.157 , c.159 , c.160 , c.162 , c.163 , c.170 , c.172 , c.188 , c.192 , c.197 , c.199 ]




ПОИСК





Смотрите так же термины и статьи:

Охлаждение вторичного пара в паропроводах между корпусами выпарной при помощи змеевика



© 2025 chem21.info Реклама на сайте