Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электролиты для анод окисления

    Из-за растворимости газов в электролите на электродах идут следующие побочные процессы на катоде — восстановление растворенного кислорода, на аноде — окисление растворенного водорода  [c.13]

    В карбонатном электролите ток переносится ионами СОз . С их участием на аноде про исходит процесс окисления топлива  [c.57]

    Кислородно-метанольный элемент. Среди элементов, в которых анодный деполяризатор подается к электроду в виде раствора, подробно изучен элемент, содержащий метанол, растворенный в щелочном электролите. На аноде из тонкодисперсного никеля в нем протекает окисление метанола с образованием углекислых и муравьинокислых солей  [c.60]


    Одновременно при электролизе воды наблюдается восстановление на катоде растворенного в электролите кислорода и окисление на аноде растворенного водорода. В результате каждого из этих процессов образуется вода. Ввиду малой растворимости водорода и кислорода при повышенных температурах эти реакции почти не отражаются на выходе продуктов электролиза по току. В современных электролизерах выход по току приближается к 98%. [c.109]

    Однако электролиз воды под давлением имеет и свои отрицательные стороны. Опытным путем было установлено, что при увеличении давления в электролизере повышается растворимость газов в электролите и уменьшается выход по току, при этом усиливаются побочные процессы восстановления кислорода на катоде и окисления водорода на аноде. [c.115]

    В электролите вследствие воздействия кислорода воздуха и окисления на аноде сернистого натрия накапливаются продукты этих реакций гипосульфит, сульфит, политионат, сульфат натрия, которые, восстанавливаясь на катоде, снижают выход сурьмы по току. Так как скорость накопления продуктов окисления сульфид-ионов превышает скорость их восстановления на катоде, необходимо систематически выводить из цикла [c.272]

    Хлор, образующийся на аноде, растворяется в электролите, образует ионы С10 и в прианодном слое окисляет кобальт. Этот процесс связан с подкислением раствора и необходимостью его нейтрализации карбонатом никеля. Непосредственное окисление ионов Ni + и Со + на аноде происходит в меньшей степени. Одна ванна очистки от кобальта может очистить анолит 30 обычных ванн. [c.379]

    Растворенные в электролите натрий и алюминий конвективной диффузией переносятся к аноду, где происходит их окисление  [c.149]

    Наиболее распространена защита алюминия и его сплавов от коррозии электрохимическим оксидированием, при котором окисление достигается действием электрического тока (см. работу 5 этого раздела). Алюминиевые изделия помещают в электролит в качестве анода, поэтому метод обработки носит название — анодное окисление, или анодирование. При анодировании на алюминии и его сплавах получают пленки толщиной 5—20 мк, а в специальных случаях до 200—300 мк. Анодирование применяется не только для защиты от коррозии и улучшения адгезии (сцепления) с лакокрасочными покрытиями, но и для декоративной отделки поверхности металла, получения на ней фотоизображений, повышения стойкости против истирания, получения поверхностного электро- и теплоизоляционного слоя и слоя высокой твердости. Твердость анодной окисной пленки на чистом алюминии 1500 кг/мм , т. е. выше, чем твердость закаленной инструментальной стали. С помощью анодных пленок алюминия изготовляют алюминиевые выпрямители и конденсаторы. В последнее время анодная окисная пленка используется как подслой для лучшего сцепления алюминия с гальваническими покрытиями (хромом, никелем, серебром и др.). [c.146]


    Используют электролит, содержащий сульфат меди в количестве 5—10 г/л в расчете на медь и 130—150 г/л серной кислоты. Температура электролита 30—60 °С. Анодом является медная пластинка, катодом — листовая медь. Их площадь в лабораторных условиях небольшая— 10—20 см2. Электролиз проводят, как описано в главе HI ( 1). Плотность тока 14—18 А/дм . Напряжение на электродах составляет 5—10 В и зависит от расстояния между электродами. Выход по току составляет 91 — 93%. Для удаления порошка меди отключают электрический ток, катод осторожно вынимают из ванны, помещают в стакан с дистиллированной водой еще раз промывают, соскабливают порошок меди с катода и высушивают его. Для предупреждения незначительного окисления порошок следует промыть спиртом и эфиром. [c.132]

    Процессы, протекающие на аноде, зависят как от электроли та, так и от материала (вещества), из которого сделан анод. Нерастворимые аноды не претерпевают окисления в ходе электролиза. В определенных условиях роль нерастворимых анодов [c.209]

    Электролизер представляет собой стальную ванну прямоугольной формы (рис. 6.1). Изнутри ванна выложена огнеупорным кирпичом и блоками из угольной массы. В блоки на дне ванны заложены стальные стержни, концы их выведены наружу. Эти блоки вместе с расплавленным алюминием служат катодом. Анод состоит из 12—14 угольных брусков и сверху опущен в ванну. Выделяющийся кислород окисляет угольный анод до СО и С02- Материал анода при этом расходуется, а потому анод по мере окисления постепенно опускается. Сверху ванны и со стороны боковых стенок электролит охлаждается окружающим воздухом и застывает сплошной коркой. В ней около анодов пробивают отверстия для выхода образующихся при окислении анода газов. При загрузке ванны сна- [c.182]

    Физико-химические процессы на кремниевом аноде. Процесс анодного оксидирования возможен тогда, когда продукты окисления не удаляются с поверхности электрода растворением в электролите. Пассивация поверхности происходит, если образующийся оксид формируется в виде плотной малопористой пленки, достаточно прочно связанной с поверхностью подложки. Это явление наблюдается только тогда, когда электрод выступает в качестве активного компонента электрохимического взаимодействия. В присутствии кислорода по-вер.хность кремния уже покрыта тонким оксидным слоем. Эта хемо-сорбционная пленка служит барьером для диффузии кислорода и предохраняет кремний от полного окисления при комнатной температуре. Преодоление этого барьера возможно или термическим путем, поскольку коэффициент диффузии экспоненциально растет с температурой, или созданием в окисле электрического поля. Одним из путей полевого ускорения диффузии и является анодное оксидирование кремния. [c.115]

    Сродство поверхности кремния к кислороду и связанная с этим склонность к формированию тонких оксидных пассивирующих покрытий позволяют при определенных условиях сместить процесс, протекающий на границе кремний—электролит в сторону образования более толстого слоя оксида. Это обычно достигается подачей на кремниевый электрод высокого положительного потенциала. Катодом при этом может служить любой инертный в данном электролите металл (платина, тантал,и т. п.). На практике невозможно получить анодные окисные пленки толще нескольких тысяч ангстрем. Это обусловлено тем, что предельный потенциал, достигаемый в процессе анодного окисления кремния, определяется электрической прочностью оксида. Кроме того, задаваемая величина тока, определяющая скорость роста оксида, также должна быть ограничена, поскольку в противном случае возможен сильный разогрев электролита, кремниевого анода, что делает процесс неуправляемым и сильно ухудшает качество образующейся пленки. [c.116]

    Электролиз хлоридных растворов может оказаться перспективным не только для цинка, но и для других процессов электролиза цветных металлов [27]. В этом случае на аноде вместо бесполезного кислорода будет выделяться хлор, который можно использовать для хлорирования продуктов, содержащих цинк, и перевода их в водорастворимую форму. Электролиз цинка из хлоридных растворов наиболее рационально сочетать с электролитическим производством хлора, расходуемого на хлорирование органических соединений. Получаемая при этом хлорировании соляная кислота может быть использована для выщелачивания цинкового концентрата, а выделяющийся при электролизе цинка хлор направлен на хлорирование органических соединений. Помимо сказанного, электролиз хлорида цинка имеет то важное преимущество, что позволяет использовать более дешевые и не загрязняющие электролит графитированные электроды, сопровождается более низким напряжением на ванне ввиду меньшей величины анодного потенциала и большей электропроводности электролита, не требует использования двуокиси марганца для окисления железа и т. д. Недостатками процесса являются усложнение конструкции и обслуживания ванн, худшее качество осадков цинка, ограниченная плотность тока. [c.71]

    Поскольку перед поступлением на электролиз свинец подвергается рафинированию пирометаллургическими способами, в частности, окислению, то в анодах почти не содержится более электроотрицательных, чем свинец, металлов (2п, Ре, N1, Со и др.). Если они все же присутствуют, то при электролизе происходит их анодное растворение и накапливание в электролите. Более электроположительные металлы (Си, В1, Ag, Аи и др.), а также кадмий в основном не растворяются и выпадают в шлам. Попадание их [c.113]

    Кроме химического травления, применяют для углеродистых и легированных сталей электрохимическое травление. Оно заключается в анодной или катодной обработке изделия в электролите определенного состава при заданном режиме. Анодное травление происходит за счет электрохимического растворения металла, химического растворения и механического отрывания окислов от поверхности металла выделяющимся на аноде кислородом. В качестве электролита применяют растворы кислот или солей соответ ствующих металлов. При катодном травлении химическое действие кислот благодаря поляризации снижается. Это связано с тем, что при наложении на систему короткозамкнутых элементов, работающих на поверхности катода, поляризации происходит сдвиг потенциала р область электроотрицательных значений и скорость окисления анодных участков уменьшится. Кроме того, имеет место механический отрыв окислов от поверхности обрабатываемого изделия, а также увеличивается восстановление окислов металла выделяющимся на катоде водородом. [c.167]


    Для нормального осаждения хрома требуется проработка электролита током в течение 3—4 ч из расчета 6—8 а чЦ. Такая проработка позволяет накопить в электролите небольшое количество ионов Сг + (2—4 г/л), присутствие которых благоприятно сказывается на процессе осаждения хрома. Значительное накопление ионов Сг + в электролите, как уже отмечалось, суживает пределы, в которых получаются блестящие осадки, и увеличивает напряжение на ванне. Для поддержания концентрации Сг + в нормальных пределах необходимо, чтобы скорость окисления хрома на аноде приближалась бы к скорости восстановления его до Сг +на катоде для этого следует поддерживать отношение между катодной и анодной поверхностью в пределах от 2 1 до 3 2. В случае значительного накопления Сг + производится проработка электролита током в условиях, когда площадь анодов в несколько раз больше площади катодов. [c.197]

    Наличие в перхлорате более 0,2% хлората значительно повышает его взрывоопасность. Поэтому стремятся к полному окислению хлората в перхлорат. Прн этом однако к концу процесса резко падает выход по току и на аноде выделяются значительные количества кислорода. Небольшой остаток хлората в электролите можно разрушить добавкой соляной кислоты. [c.429]

    Электролитическое получение металлического марганца проводят в ваннах токовой нагрузкой 2000 А с разделенными катодным и анодным пространствами катодная плотность тока 400 А/м катодный выход по току марганца 60 %. Исходный электролит, подаваемый в катодное пространство, имеет зН 6-4-7 и содержит сульфата марганца в пересчете на металл Мп +1 а., " 35 г/л. Концентрация марганца в католите, непрерывно протекающем через диафрагму в анодное пространство, (Мп + ,(ц 12 г/л. На нерастворимом аноде наряду с выделением кислорода протекает реакция образования МпОа-Участие в реакции его анодного окисления до МпОз составляет 20 % от массы катодно осаждающегося марганца. Напряжение на электролизере равно 5,0 В. [c.275]

    Сверху и со стороны боковых стенок ванны электролит охлаждается окружающим воздухом и застывает сплошной коркой. В ней около анодов пробивают отверстия для выхода образующихся при окислении анода газов. При загрузке ванны сначала вводится криолит и фторид кальция. После их расплавления (пропусканием электрического тока) добавляют чистый оксид алюминия или очищенный боксит. [c.250]

    ЭЛЕКТРОЛИЗ, химические р-ции, протекающие под действием электрич. тока на электродах, помещенных в р-р, расплав или тв. электролит. В электрич. поле положительно заряж. ионы (катионы) движутся к катоду, отрицательно заряженные (анионы) — к аноду. На катоде происходит восстановление, на аноде — окисление ионов или молекул, входящих в состав электролита. Кол-во образовавшихся на электродах в-в и кол-во пропущенного электричества связаны Фарадея законами. Если на каждом из электродов одновременно образуется ряд продуктов, доля тока (в %), идущая на образование одного из них, наз. выходом данного продукта по току. Обычно Э. осуществляют в электролитич. ячейках — электролизерах. Миним. напряжение, к-рое надо приложить к электродам электролизера, чтобы осуществить Э., наз. напряжением разложения. Напряжение разложения превышает разность термодинамич. потенциалов обоих электродов на величину электродной поляризации и омич, падения напряжения в электролизере. Для достил<ения достаточно высоких скоростей Э. к электродам прикладывают напряжение более высокое, чем напряжение разложения. При этом энергия, затраченная на компенсацгпо электродной поляризации и омич, потерь в различных участках электрической цепи, превращается в тепло. [c.699]

    В конце 1967 г, испытывался в течение 1500 ч ЭХГ из 36 водородно-кислородных ТЭ общей мощностью 2 кВт (анод — окисленный N1 с —Р(1 катод — позолоченный N1, покрытый РТРЕ с Р1 Рс1 асбестовая матрица электролит — 35% КОН, На и Оз прл /5 = 0,12 МПа чистотой 99,999%, температура батареи ТЭ 62,8 °С температура конденсаторов 48 °С). [c.409]

    Электролизом называют окислительно-восстановительный процесс разложения вещества электрическим током. На катоде, подключенном к отрицательному пслюсу, происходит процесс восстановления, а на аноде — окисления. Электролизу подвергаются только электролиты. Чтобы обеспечить ионам подвижность, электролит переводят в раствор или расплав. [c.121]

    Химическая поляризация. Электролизом называется процесс химического превращения, происходящего в результате действия электрического тока. Этот процесс противоположен протекающему в гальванических элементах, так как он требует затраты электрической I энергии. При электролизе через электролит обычно пропускается постоянный ток и в результате на отрицательном электроде разряжаются катионы, а на положительном — анионы. Первый электрод принят называть катодом, а второй — анодом. На катоде всегда присходят йроцессы восстановления, а на аноде — окисления. [c.187]

    При прохождении тока через электролит, в который погружены два электрода, на электродах происходят процессы восстановления и окисления соответствующих ионов. Например, при электролизе раствора СиС12 катод, получающий электроны от источника тока, передает их Си2+-ионам, которые при этом восстанавливаются до металлической меди и отлагаются на поверхности катода. В то же время С1 -ионы, подходя к аноду, отдают ему свои избыточные электроны, окисляясь до свободного хлора, выделяющегося в виде газа после насыщения раствора. [c.422]

    В серебряно-цинковом аккумуляторе анодом явл 1ется пористая цинковая пластинка, катодом—окислы серебра АдгО и AgO, полученные электролитическим окислением металлического серебра. Электролит — концентрированный раствор КОН, насыщенный цинкатом калия 2п(0К)г. Заряженный аккумулятор может быть представлен в виде  [c.601]

    Про1гесс электролиза используется в работе аккумуляторов, являющихся вторичными химическими источииками электрической энергии. Аккумулятор — это электролит с погруженными в него специальными электродами. Сначала через это устройство пропускают постоянный электрический ток, причем происходит электролиз, в результате которого материал одного из электродов подвергается восстановлению, а другого — окислению. В этом заключается зарядка аккумулятора. Заряженный таким образом аккумулятор может работать как гальванический элемент, т. е. давать электрический ток. При этом происходит разрядка аккумулятора — процесс, обратный зарядке. В процессе разрядки электрод, бывший при зарядке катодом, становится анодом и его материал подвергается окислению наоборот, электрод, бывший при зарядке анодом, становится при разрядке катодом и его материал подвергается восстановлению. В результате разрядки аккумулятор приходит в первоначальное состояние и может быть снова заряжен. Зарядка и разрядка могут повторяться многократно, в связи с чем аккумуляторы могут находиться в эксплуатации продолжительное время. [c.211]

    В основе электролитического трехслойного метода 1)афинир6вания лежит процесс анодного окисления и последующего катодного восстановления алюминия. Анодом (нижний слой) электролизера является рафинируемый алюминий, содержащий Рис. 2.10. Схема электроли-для увеличения плотности до 40% тического рафинирования меди, катодом (верхний слой) — очи- алюминия щенный алюминий. Между катодом, рафинируемого и анодом располагается расплавленный электролит, состоящий из смеси хлоридов бария и натрия и фто-2  [c.35]

    В процессе электролиза свинцовые аноды покрываются слоем двуокиси свинца PbOj, которая катализирует окисление трехва-лентного ipoMa и защищает свинец от дальнейшего разрушения. При поддержании определенного соотношения анодной и катодной плотностей тока можно установить равновесие, при котором на аноде будет окисляться такое же количество трехвалентного хрома, которое попадет в электролит из катодной зоны. Чем больше анодная поверхность и, следовательно, чем меньше анодная плотность тока, тем с ббльшим выходом по току окисляется трехвалентный хром. В нормально работающих ваннах рекомендуется поддерживать отношение анодной поверхности к катодной в пределах от 1 2 до 2 3. [c.421]

    Относительные концентрации в растворе свинца и олова выбираются в зависимости от состава сплава. Для получения сплава с малым содержанием олова (8—12% 5п) примерные концентрации солей металлов составляют 0,5—0,8 н. РЬ, 0,1—0,15н. Зп для сплавов с повышенным содержанием олова (40—60%) 0,3—0,4 н. РЬ, 0,5—0,9 н. Зп. Свободная кислота, необходимая для предупреждения гидролиза солей, предотвращения окисления двухвалентного олова и четырехвалентное и улучшения растворения анодов, содержится в количестве 0,5—1,2 н. в борфтористоводо-родном электролите 0,4—0,7 н. в фенолсульфоновом. В борфто-ристоводородном электролите должна присутствовать также борная кислота (25—35 г/л) для подавления гидролиза НВр4 и связывания образующейся при этом фтористоводородной кислоты. [c.437]

    Поэтому в электролите постоянного состава для каждой температуры существует определенный минимум плотности тока, ниже которого осаждения хрома не происходит. Для хро-мпрования применяют достаточно высокие плотности тока—в интервале 1— 10 кA/м , что приводит к повышению напряжения на электролизере до 12 В и выделению значительного количества джоулевой теплоты. Выход по току хрома растет с повышением плотности тока. Поэтому электролиты хромирования. чмо.ют плохую рассеивающую способность. Это связано также с тем, что катодная поляризация мало изменяется с плотностью тока. Для хромирования применяют нерастворимые аноды из свинца или сго сплавов с оловом (10%) или сурьмой (6%), на которых протекают процессы выделения кислорода и окисления трехвалентного хрома до шестпиалентного. [c.46]

    Прп электролизе материал катода — титан, никель, медь. Нерастворимый анод — платинированный титан или свинец растворимый анод — медь. Необходимо проверять содержание меди и серной кислоты в электролите по описанной ниже методике и соответственно корректировать электролит. Медная губка юдвержена окислению. Поэтому после электролиза ее тщательно отмывают на воронке Бюхнера от раствора дистиллированной водой (50—60°С), контролируя ионы меди в фильтрате раствором К4ре(СН)б, затем губку стабилизируют для предохранения от окисления 0,02—0,05 % раствором мыла при 60—70 С. Остатки стабилизатора удаляют промывкой горячей подои до прекращения ее помутнения, отфильтровываьэт поро-пюк II сушат в вакуумном сушильном шкафу. [c.135]

    Существование на аноде хемосорбированного кислорода приводит к тому, что парциальное давление кислорода на аноде оказывается выше упругости диссоциации СОг на кислород и углерод. В этих условиях первичным газом на аноде может быть только СО2. Если бы образовался СО, то он немедленно окислился бы избыточным хемосорбированным кислородом до СО2. Между тем газы, удаленные из электролизера, состоят из смеси СО и СОо, причем содержание СО колеблется от 30 до 50 %. Оксид углерода(IV) образуется в результате вторичных реакций взаимодействия растворенных в электролите субфторидов натрия и алюминия с СО2 и окислением углекислым газом углерода СО2 + С 2С0. При этом последняя реакция протекает только с неполяризованным углеродом (угольной пеной, взвешенной в электролите боковыми гранями анода, выступающими из электролита). Основное влияние на состав газа имеют реакции взаимодействия углекислого газа с субфторидами алюминия и натрия. Известно, что с повышением температуры содержание СО2 в анодных газах падает, а СО — повышается. Это связано с увеличением скорости образования субфторидов А1Р и N32 и переноса их от катода к аноду. [c.150]

    Во время работы гальванического элемента, изображенного на рис. 19.2, окисление Zn приводит к появлению дополнительных ионов Zn-" в анодном отделении элемента. Если не существует способа нейтрализации их положительного заряда, дальнейщее окисление приостанавливается. Подобно этому восстановление Си вызывает появление избыточного отрицательного заряда в растворе в катодном отделении. Принцип электронейтральности соблюдается благодаря миграции ионов через солевой мостик , который показан на рис. 19.2. Солевой мостик представляет собой U-образную трубку, содержащую раствор какого-либо электролита, например NaNOj (водн.), ионы которого не реагируют с другими ионами в гальваническом элементе, а также с материалами, из которых сделаны электроды. Концы U-образной трубки закрывают стекловатой или гелем, пропитанным электролитом, чтобы при перевертывании трубки электролит не вылился из нее. При протекании на электродах процессов окисления и восстановления ионы из солевого мостика проникают в анодное и катодное отделения гальванического элемента, чтобы нейтрализовать образующиеся там заряды. Анионы мигрируют по направлению к аноду, а катионы-по направлению к катоду. В принципе во внещней цепи не протекает никакого тока до тех пор, пока ноны не получат возможность мигрировать через раствор из одного электродного отделения в другое и тем самым замыкать электрическую цепь. [c.206]

    При электролизе растворов электролит )в происходит конкуренция между растворенным веществом и растворителем за участие в электродном процессе. Поэтому состав продуктов окисления на аноде и восстановления на катоде зависит, в первую очередь, от концентрации раствора. Рассмотрим процесс электролиза разбавленных водных растворов электролитов, в которых концентрации ионов не превышают 1 моль/л. О том, какие частицы (ионы вещества или молекулы воды) будут в первую очередь разр яжаться на электродах, можно судить по их стандартным электродным потенциалам. [c.191]

    Цианистая ванна цинкования в автомате подвесочного типа имеет общий объем раствора у = 8,8 м , работает при силе тока I = 1500 А и катодном выходе по току = 70%. Ванна эксплуатируется 16 ч в сутки (без подготовительно-заключительного времени) при пятидневной рабочей неделе. Детали покрываются цинком на толщину 6 = 9 мкм. Затраты тока на покрытие неэкранированных частей подвесок и получение бракованных деталей составляют 8 % (К = 0,92). Унос электролита из ванны цинкования с деталями и при вентиляции равняется р = 100 мл/м" поверхности годных деталей. Ванна работает с транспассивными цинковыми анодами, на которых = 4,2 % тока затрачивается на окисление цианида. Поглощение диоксида углерода из воздуха щелочным электролитом ванны составляет в среднем = 13 л/ч (приведенный объем). Исходный электролит содержит = = 3,5 г/л ЫагСОд. Изменение объема электролита ванны в ходе эксплуатации корректируют исходным раствором. [c.179]


Смотреть страницы где упоминается термин Электролиты для анод окисления: [c.629]    [c.439]    [c.439]    [c.513]    [c.208]    [c.202]    [c.336]    [c.54]    [c.150]    [c.227]    [c.364]    [c.414]    [c.193]    [c.87]   
Электроосаждение металлических покрытий (1985) -- [ c.229 ]




ПОИСК





Смотрите так же термины и статьи:

Аноды



© 2025 chem21.info Реклама на сайте