Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбид пористость

    Жидкая фаза, образующаяся в печах для получения карбида кальция, является смесью карбида и окиси кальция, в которой стремятся иметь как можно меньше окиси кальция. Жидкая фаза находится в контакте, с одной стороны, с растворяющейся окисью кальция, с другой стороны, с коксом, с которым реагирует растворенная окись кальция. Если реакция восстановления не протекает достаточно быстро, процентное содержание окиси кальция в жидкой фазе будет слишком высоким. Неизвестно, какие свойства кокса облегчают протекание реакции с жидкой фазой можно назвать как благоприятные факторы неспособность углерода к графитизации и большую пористость кокса. Практически можно констатировать, что коксы, полученные из шихт с повышенным содержанием пламенных углей или, наоборот, тощих углей, ведут себя одинаково хорошо в печах для получения карбида кальция. [c.194]


    Продукты коксования и их использование. Кокс представляет собой твердый матово-черный, пористый продукт. Из тонны сухой шихты получают 650—750 кг кокса. Он используется главным образом в металлургии, а также для газификации, производства карбида кальция, электродов, как реагент и топливо в ряде отраслей химической промышленности. Широкое применение кокса в металлургии определяет основные предъявляемые к нему требования. Кокс должен обладать достаточной механической прочностью, так как в противном случае ои будет разрушаться в металлургических печах под давлением столба шихты, что увеличит сопротивление движению газов, приведет к расстройству работы доменной печи, снижению ее производительности и т. п. Кокс должен иметь теплотворную способность 31 400—33 500 кДж/кг. Показателями качества кокса является горючесть и реакционная способность. Первый показатель характеризует скорость горения кокса, второй — скорость восстановления им диоксида углерода. Поскольку [c.38]

    В то же время Д. И. Менделеев предполагал, что образование нефти происходит глубоко в земной коре в результате действия воды на карбиды металлов. Углерод карбидов и водород, входящий в состав воды при этих реакциях, превращаются в углеводороды, которые в газообразном виде поднимаются по трещинам в земной коре в верхние более холодные слои. Пары жидких углеводородов здесь конденсируются, образуя в пористых пластах залежи нефти. В. Д. Соколовым была выдвинута космическая гипотеза происхождения нефти, согласно которой углеводороды находились в первоначальном земном газовом облаке и были поглощены при образовании земной коры. [c.67]

    Карбид кремния десять различных сортов с удельной поверхностью от 0,138 до 0,569 м /г, пористостью от 30 до 58%, средним насьшным весом от 0,7 до 1. [c.370]

    Получены пористые изделия из карбидов тугоплавких материалов, имеющие более высокую механическую прочность, более равномерную пористость по сравнению с зарубежными аналогами. Это позволило по новой технологии получать абсорбенты, предназначенные для последующей иммобилизации радионуклидов. Предложенная технология является более технологичной, так как термообработка на первой и второй стадиях получения карбида проводится при более низкой температуре. [c.161]


    Повышение температуры до 2000 °С ускоряет процесс карбидообразования. На рис. 100 показаны закономерности процесса увеличения содержания карбида кремния в составе силицированных графитов СГ-Н, СГ-М, СГ-П, СГ-Т при 2000 °С и выдержках до 50 ч. Чем больше пористость исходного графита, тем больше за одно и то же время образуется карбида кремния. Длительные выдержки мало влияют на увеличение содержания карбида кремния в составе силицированного графита. [c.244]

    Исследования были проведены на образцах размером 5 х 8 х X 35 мм, изготовленных из сплава В Кб. Металлографическим анализом установили, что пористость сплава не превышала 0,2%, графит и фаза т] отсутствовали. Дополнительно были изготовлены образцы объемом 0,9 см из чистой меди и кобальта с добавкой карбида вольфрама до эвтектического состава (Со — 64, С — 36 вес.% [c.94]

    Исследуемые образцы гранью 5 X 8 мм приводили в контакт с образцами из меди и кобальта, помещали в вакуумную печь и при остаточном давлении 10 мм рт. ст. нагревали со скоростью 40— 50 град/мин до температуры 1370° С. При этой температуре фаза у в сплаве В Кб, медь и кобальт эвтектического состава находились в жидком состоянии. Время контакта твердосплавных образцов с расплавом кобальта и жидкой медью составляло 8 мин. Дополнительно были проведены исследования по взаимодействию расплава кобальта эвтектического состава и меди с образцами, полученными горячим прессованием порошка карбида вольфрама. Образцы из карбида вольфрама имели пористость 0,6%, размер основной фрак- [c.94]

    Полукокс обладает высокой реакционной способностью и пригоден для получения сероуглерода, карбида кальция, необходимого в производстве фосфора. Он служит топливом (часто пылевидным) для топок и газогенераторов. Полукокс из бурых углей, вследствие интенсивного вьщеления большого количества летучих веществ, характеризуется большой пористостью и может быть использован как адсорбент. [c.192]

    Образующаяся при плавке в присутствии воздуха пористая масса представляет собой твердый раствор карбида и нитрида [c.736]

    Нефтяной кокс представляет собой твердый пористый черного цвета продукт глубокого уплотнения нефтяных остатков. По способу получения их подразделяют на коксы замедленного коксования и коксы, получаемые коксованием в периодических кубах крекинговых или пиролизных остаточных продуктов переработки нефти. Кокс широко применяют в различных областях народного хозяйства цветная и черная металлургия, химическая промышленность, производство карбидов, синтетических алмазов, ядерная энергетика, авиационная и ракетная техника, электро- и радиотехника и др. [c.170]

    Изменение межкристаллитных прослоек в тонких пленках возможно под действием кислорода и влаги воздуха. Интенсивность этого воздействия очень велика, принимая во внимание малую толщину и пористость пленки. Ослабить его можно уплотнением межкристаллитных прослоек и поверхности пленки в целом в результате образования плотных и химически стойких окислов. Для этого существует три способа использование жаростойкого и химически стойкого тантала и его окислов, нитридов и карбидов, включение легирующих добавок в металлы и сплавы, образующих необходимые плотные окислы на поверхности, введение в состав пленки стекловидных защитных составляющих. [c.139]

    Пропан, этилен, пропилен на ГПЗ подается по трубопроводной сети, бутан, ацетилен, пропан - в баллонах. Ацетилен чаще получают из карбида кальция в генераторах типа карбид в воду (КВ) или вода в карбид (ВК) и контактных (К). Типы однопостовых генераторов АНВ-1,25 - принцип (ВК), АСМ-1,25-3 - принцип (КВ), АСИ-1,25-6, АСИ-1,25-7 производительность по ацетилену 1,25 мVч, загрузка 3,5 кг карбида. Ацетилен поставляют в баллонах вместимостью 40 л на давление до 1,9 МПа, объем ацетилена 5,5 м , цвет баллона - белый, надпись Ацетилен . Баллон заполнен пористой массой. Кислород поставляют в баллонах вместимостью 40 л при давлении 15 МПа, объем кислорода 5 м , цвет баллона -голубой, надпись Кислород . [c.391]

    Металлокерамические фильтры - фильтры из спеченных порошкообразных металлов (Т1, N1, Ag и др.) и карбидов титана и циркония. Размер пор у таких фильтров колеблется от 1-10 до 7,510 2 мм, а пористость достигает 50%. Химическая устойчивость определяется металлом, из которого изготовлен фильтр. [c.34]

    Выше отмечалось, что состав, структура и пористость продуктов СО2 -коррозии на поверхности определяют склонность сталей к разрушению. На поверхности нормализованных сталей различных типов (состав в % 0,33 С 0,41 81 1,59 Мп 0,016 Р 0,017 8 0,09 № 0,58 Сг 0,24 Мо 0,01 Си 0,04 А1 0,01 Т и 0,15...0,20 С 0,60... 0,90 Мп 0,04 Р 0,05 8) защитный первичный слой карбидов железа большей толщины, более пластичный и менее пористый, чем слой первичных отложений на поверхности указанных сталей, прошедших термическую обработку по режиму закалки и последующего отпуска. Этот факт обменяется зависимостью силы адгезии продуктов коррозии с поверхностью стали от состояния микроструктуры сплава в результате взаимодействия поверхности стали с раствором СОг-КаС происходит избирательная коррозия феррита, а оставшийся в нормализованной стали равномерно распределенный перлит способствует сцеплению кристаллов карбоната железа с поверхностью. [c.479]


    Известны очень сложные катализаторы, содержащие бопее десяти различных элементов 1156]. Предпринимались попытки создать нанесенные ванадийфосфороксидные катализаторы. В качестве носителе были предложены оксиды алюминия и кремния карбиды, пористые стекла, однако скорость образования малеинового ангидрида на нанесенных V-P-оксидных катализаторах недостаточно высокая. [c.146]

    Схема питателя изображена на рис. 4. Материал, предназначенный для транспортировки (например, поступающий с выхода шаровых или трубчатых мельниц) по наклонному желобу 1 поступает в циркуляционную камеру 2. На решетках 3 из пористого карбида кальция образуется псев-доожиженный слой высотой 50 мм. При этом материал проходит через шроадежуток между решетками и основанием коивейерной трубы, расположенной внутри циркуляционной камеры, и через конвейерную трубу поступает в пневматическую систему транспортировки. По оси циркуляционной камеры расположена небольшая центральная труба 5, 1И1ЖНИЙ конец которой находится почти на уровне отверстия конуса камеры, а верхний выступает над нижним концом конвейерной трубы на 127 мм. В центральной трубе при нормальной работе питателя создается вакуум. Поэтому материал, который попадает на дно конуса питателя, всасывается в нее и далее поступает в конвейерную трубу. При этом тяжелые металлические включения проходят через отверстие конуса и удаляются из питателя. Система снабжена автоматическим выключателем при перегрузке. [c.13]

    В отсутствии влаги чистый металл химически стоек, не реагирует с кислородом, серой, галогенами, однако в высокодисперсном состоянии пирофорен. Техническое железо и его спла вы корродируют в атмосфере паров воды, оксида углерода (IV) и кислорода с образованием пористого слоя гидратированного оксида железа (II) ГеО пНаО. Не взаимодействует с щелочами. С углёродом при высоких температурах образует растворимый в металле карбид железа Feg (цементит) с содержанием угле-родаб,67% и температурой плавления 1550°С,атакже два типа твердых растворов. Железо так же образует многочисленные сплавы с другими металлами. [c.39]

    Десять лет спустя, 15 октября 1876 года, на заседании Русского химического общества выступил с обстоятельным докладом Д. И. Менде леев. Он изложил свою гипотезу образования нефти. Ученый иraл, что во время горообразовательных процессов по трещинам-разломам, рассекающим земную кору, вглубь поступает вода. Прс, ачиваясь в недра, она в конце концов встречается с карбидами железа,-под воздействием окружающих температур и давления вступает с ними в реакцию, в результате которой образуются оксиды железа и углеводороды, например этан. Полученные вещества по тем же разломам поднимаются в верхние слои земной коры и насыщают пористые породы. Так образуются газовые и нефтяные месторождения. [c.22]

    Свойства УУКМ изменяются в широком диапазоне. Прочность карбонизованного УУКМ пропорциональна плотности. Графитация карбонизованного УУКМ повышает его прочность. Прочность УУКМ на основе высокопрочных УВ выше прочности КМ на основе высокомодульных УВ, полученных при различных температурах обработки. К уникальным свойствам УУКМ относится высокая температуростойкость в инертных и восстановительных средах. По способности сохранять форму и физико-механические свойства в этих средах УУКМ превосходит известные конструкционные материалы. Некоторые УУКМ, особенно полученные карбонизацией углепластика на основе органических полимеров, характеризуются увеличением прочности с повышением температуры эксплуатации от 20 до 2700 С. При температурах выше 3000°С УУКМ работоспособны в течение короткого времени, так как начинается интенсивная сублимация графита. Чем совершенней кристаллическая структура графита, тем при более высокой температуре и с меньшей скоростью происходят термодеструктивные процессы. Свойства УУКМ изменяются на воздутсе при длительном воздействии относительно невысоких температур. Так, при 400 - 650°С в воздушной среде происходит окисление УУКМ и, как следствие, быстрое снижение прочности в результате нарастания пористости. Окисление матрицы опережает окисление УВ, если последние имеют более совершенную структуру углерода. Скорость окисления УУКМ снижается с повышением температуры их получения и уменьшением числа дефектов. Эффективно предотвращает окисление УУКМ пропитка их кремнийорганическими соединениями из-за образования карбида и оксида кремния. [c.92]

    Во-вторых, в это время заводом был освоен процесс силицирования графита. Процесс базируется на пропитке жидким кремнием при температуре несколько выше его расплавления специальных сортов графита, характеризующихся необходимой и равномерной пористостью. Такие графиты, ПРОГ-2400 и ПГ-50 , были созданы НИИграфитом, а процесс пропитки разработан учеными ИГИ и Всесоюзного института твердых сплавов (ВНИИТС) А.И. Рековым и И.С. Брохиным. Силицированный графит состоит из двух фаз — карбида кремния и графита — и обладает уникальными свойствами. Во-первых, при температурах вплоть до 2000°С, до распада карбида кремния, он эффективно противостоит воздействию окислительных сред, во-вторых, обладает прочностью и твердостью карбида кремния, который, как известно, царапает даже стекло. Если твердость алмаза составляет 10 условных единиц, то карбид кремния ему уступает немного, всего одну единицу. Вот почему силицированный графит может быть обработан только алмазным инструментом. [c.97]

    Опыт 4. Определить зависимость пористости от толщины никелевого покрытия и КЭП никель-карбид кремния или иикелг -оксид хрома. [c.42]

    В гидрофобизированных электродах, разработанных Л. Нидрахом и X. Элфордом, оптимальное распределение газа и жидкости в пористом теле достигается введением в него гидрофобных материалов (рис. 122,6). В качестве материала таких электродов используют высокодисперсные платиновые металлы в чистом виде пли на носителе (карбидах металлов, угле и т. п.). В качестве гидрофобизатора и одновременно связующего вещества применяют фторопласт или полиэтилен. Гидрофобизированный катализатор наносится на металлическую сетку или на пористую подложку из угля, пластмассы или других материалов. Запорным слоем электродов служит мелкопористая гидрофильная подложка или более гидрофильный наружный слой катализатора. Для гидрофобизированных электродов характерно постепенное увеличение степени гидро-фобности по мере перехода от электролита к газу. Гидрофобизированные электроды тоньше и легче, чем гидрофильные, поэтому их применение позволяет повысить удельную мощность топливного элемента. Кроме того, эти электроды могут работать практически при отсутствии перепада давления газа. [c.238]

    Карбиды никеля особенно неустойчивы, и никель всегда стараются освободить от примесей углерода, так как он вместе с примесями азота и водорода вызывает пористость отливок, сварных швов. Вообн1е все жаропрочные сплавы не должны содержать более чем 0,02% углерода. [c.375]

    Влияние времени выдержки на количество образовавшегося карбида кремния и остаточного кремния при 1800-1850 °С на образцах из силицированного графита марки СГ-Т, изготовленного на основе пористого графита марки ПГ-50, представлено на рис. 99. Характер кривых свидетельствует о том, что в начальной стадии процесс пропитки и карбидооб-разования протекает очень быстро, затем, после заполнения пор жидким кремнием (максимум на кривой 2) и образования на их поверхности тонкого слоя карбида кремния количество свободного кремния в материале медленно уменьшается, а количество карбида кремния медленно возрастает. Замедление процесса карбидообразования объясняется малой скоростью диффузии углерода через слой карбида кремния. Поэтому для снижения содержания свободнрго кремния в силицированном графите марки СГ-Т выдержка при 1800—1850 °С должна составлять не менее 30 мин. [c.244]

    Изделия порошковой металлургии получают из металлических порошков, в ряде случаев с добавкой неметаллических компонентов, например, графита, карбидов, с последующим прессованием и спеканием полученных композиций. Для получения пористых изделий в исходную композицию вводят компоненты, которые затем выплавляют или выжигают. Производство деталей по такой технологии практически не имеет отходов, но требует сложной технологической оснастки. Используют как антифрикционный подшипниковый материал (железографитовый, железомеднографитовый, металлофторо-пласт) в виде втулок или вкладышей, не требующих подвода смазочного материала, в качестве фильтрующих элементов (из никеля, титана, углеродистой стали, коррозионно-стойкой стали в зависимостн от свойств среды) для очистки жидкостей и газов и в виде фрикционных материалов с повышенными коэффициентами трения, износо- и теплостойкостью. [c.101]

    При удалении дисперсионной среды (третья стадия процесса) появляются прочные фазовые контакты, при этом тиксотропные св-ва теряются и мех. разрушения структуры становятся необратимыми. При высушивании гель превращ. в твердое тонкопористое тело (ксерогель) с конденса-ционно-кристаллизац. структурой. В процессе сушки может происходить заметное уплотнение геля и изменение его структуры. Разработаны способы сушки, уменьшающие этот эффект и обеспечивающие получение материалов с высокой открытой пористостью. Благодаря высокой дисперсности ксерогелей (размер частиц 10 -10 м) путем формования и спекания производят прочные, плотные изделия с определенной геом. формой из тугоплавких материалов, напр, из оксидов, карбидов и нитридов, причем т-ры спекания на 100-300 °С ниже, чем при использовании методов порошковой технологии (см. Порошковая металлургия). [c.174]

    Изделия из К. получают гл. обр. спеканием, а также пропиткой керамич. пористой заготовки расплавленным металлом, осаждением металлов из р-ров на пов-сти керамич. частиц и др. Исходные порошки получают измельчением (ииогда совместно) в шаровьк, вибрационных и др. мельницах, используя в качестве среды орг. жидкости. Для предупреждения расслоения порошков илн суспензий вследствие различия плотностей металла и керамики в смесь вводят вязкие жидкости и разл. добавки. После высушивания порошки формуют прессованием, шлинкерным литьем, выдавливанием, прокаткой и т.п. Спекание К. в печах осуществляют в атмосфере инертного газа или в вакууме. На этой стадии стараются избегать окисления, азотирования или карбидизации металла и восстановления оксидов, а также диссоциации нитридов и карбидов. [c.373]

    С, изготовляют на основе переходных металлов IV-VI гр., а также тугоплавких карбидов, нитридов, силицидов, боридов разл. металлов. Легкоплавкие С. на основе Sn, РЬ, d, Bi (напр., сплав Вуда), Та, Hg, Zn имеют т-ры плавления ниже отдельных компонентов и используются в качестве предохранит, вставок, пробок легкоплавких припоев. Пористые С. создают в осн. методами порошковой металлургии. С. со сквозными порами используют в качестве фильтров, самосмазывающихся подшипников, пламегасителей с изолир. порами (пеноматериалы) - в качестве теплозащиты. В атомной технике используют С. с особыми ядерными св-вами высоким или низким сечением захвата (вероятностью поглощения) нейтронов, у-лучей способностью замедлять и отражать нейтроны способностью передавать тепло, выделившееся в результате ядерных р-ций (напр., С. для твэлов). Для нх изготовления используют актиноиды Li, Ве, В, С, Zr, Ag, d, In, Gd, Er, Sm, Hf, W, Pb и др. элементы. [c.409]

    В связи с необходимостью применения однопоточной, схемы предложено использовать в электролизерах катоды с обвертками, играющими роль диафрагмы. В качестве таких катодов используют или графитовые стержни, обвернутые кислотостойким асбестовым шнуром, или стержни из пористого карбида хрома, обвернутого лентой из терилона. [c.170]

    Еще в 1852 г. Шнабель и в 1859 г. Розе упоминали о безводных волокнистых формах кремнезема, которые получались при высокотемпературных металлургических процессах. Мягкие шелковистые волокна, состоящие более чем на 98 % из ЗЮз, "были классифицированы как афанитный (невидимый) кремнезем, известный также под названием люссатит . Примерно в 1910 г. внутри электропечей, применявшихся для получения карбида кремния, был обнаружен мягкий пористый серый налет, получивший название слоновое ухо . Такой налет был идентифицирован как аморфный микроволокнистый кремнезем [67]. Возможно, что все отмеченные выше волокнистые формы представляли собой кремнезем [c.31]

    Карбиды, нитриды, бориды, силициды, сульфиды (например, 81С, 2тС, В4С, ВЫ, 81зЫ4, Т1В2, Мо812, Се8) Углерод, более или меиее пористый, вплоть до почти газонепроницаемого Углерод, газонепроницаемый [c.22]

    Образовавшиеся в газообразном состоянии углеводороды, по мнению Д. И. Менделеева, поднимались затем в верхнюю холодную часть земной коры, где они конденсировались и накапливались в пористых осадочных породах. Карбиды металлов в то время в глубинных породах еще не были известны. В настоящее время предположение Д. И. Менделеева подтвердилось, в глубинных породах найдены карбиды ряда элементов (РезС, Т1С, СггСз, С, 51С). Но крупных скоплений они не образуют зто мельчайшие (доли миллиметра) редко встречающиеся и рассеянные в породах минеральные выделения. Поэтому процесс образования углеводородов в огромных количествах, которые известны в природе, с этих позиций объяснить очень трудно. Не вызывает сомнений сейчас также, что вода с поверхности по трещинам на большие глубины поступать не может. Но это и не существенно, флюидная фаза глубинных пород в определенных условиях воду содержит, поэтому в принципе ее взаимодействие с карбидами возможно. Вполне вероятно и образование простейших углеводородов, однако вряд ли это возможно в больших количествах. [c.39]

    Исследовалось поведение электродов из пористого карбида титана и нитридов титана состава TiNo 29 ТхКо,,, и [120]. Отмечена [c.130]

    Как очень регулярно и экономно работаюш,ая печь, в литературе приводится печь Карлсона, эксплоатируюш,аяся в Щвеции и Норвегии. Она похожа на доменную печь, разделена на этажи. Порошок карбида посредством механического приспособления передвигается против потока азота. Нагрев производится помош,ью электричества. Цианамид кальция получается в пористом виде и легче поддается измельчению. На тонну его расходуется 725 килограмм карбида. Получаюш,ийся в этой печи цианамид кальция содержит 19—20% химически связанного азота. [c.98]

    Приведены результаты распределения скорости продольных волн в различных зонах образцов. Получены линейнопадающие зависимости скорости звука от процентного содержания пор в карбиде кремния и нитриде кремния. Для карбида кремния увеличение пористости от нуля до 12 % снижает скорость звука с 12000 до 10800 м/с. Для нитрида кремния рост пористости от нуля до 40 % уменьшает скорость с 11000 м/с до 6000 м/с. [c.810]


Смотреть страницы где упоминается термин Карбид пористость: [c.104]    [c.283]    [c.95]    [c.101]    [c.101]    [c.82]    [c.224]    [c.224]    [c.224]    [c.130]    [c.610]    [c.140]    [c.265]   
Тугоплавкие материалы в машиностроении Справочник (1967) -- [ c.18 ]




ПОИСК







© 2024 chem21.info Реклама на сайте