Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хрома теплопроводность

    Как самый тугоплавкий металл вольфрам входит в состав ряда жаропрочных сплавов. В частности, его сплавы с кобальтом и хромом — стеллиты — обладают высокими твердостью, износоустойчивостью, жаростойкостью. Сплавы вольфрама с медью и с серебром сочетают в себе высокие электрическую проводимость, теплопроводность и износоустойчивость. Они применяются для изготовления рабочих частей рубильников, выключателей, электродов для точечной сварки. [c.517]


    По мере повышения температуры теплопроводность уменьшается. Теплопроводность зависит главным образом от состава чугуна и в меньшей степени от его структурных составляющих. Кремний, никель, марганец и ванадий уменьшают теплопроводность, а хром и вольфрам увеличивают се. [c.128]

    Если основным материалом являются пластмассы, то вначале необходимо применить электролиз медного или никелевого осадка. Для того чтобы основной слой стал электропроводным, часто приходится использовать плотные пластичные грунтовые покрытия с целью сохранения адгезии между пластмассой и слоями хрома и никеля. В противном случае из-за разной удельной теплопроводности этих материалов может возникнуть внутреннее напряжение на межфазных границах. [c.126]

    В электропечах сопротивления косвенного действия теплота выделяется в специальных нагревательных элементах, по которым проходит электрический ток. При этом нагреваемой среде теплота передается как лучеиспусканием и теплопроводностью, так и конвекцией. В таких печах возможно осуществлять нагревание до температур на уровне 1000-1400 °С. Принципиальная схема обогрева электропечи показана на рис. 12-8. Теплота выделяется при прохождении электрического тока через спиральные нагревательные элементы 2, уложенные в футеровке печи вокруг аппарата. Проволочные или ленточные нагревательные спирали изготовляют чаще всего из нихрома - сплава, содержащего 20% хрома, 30-80% никеля и 0,5-50% железа. [c.328]

    Каталитическое окисление сернистого газа Платина (0,015—0,02%) Алюминиевая проволока (2 мм диаметром, 3 мм длиной), а также другие металлические носители, например хром, никель (с обычными носителями платины, такими как силикагель, достижение идеального температурного режима невозможно вследствие их малой теплопроводности) 12 [c.454]

    Дегидрогенизация алифатических вторичных спиртов (изопропилового спирта, вторичных гексиловых спиртов) в кетоны Окись церия, цинка, магния, марганца, хрома и т. д. на носителе с теплопроводностью по меньшей мере 0,2 для приготовления катализатора из окиси и воды делают пасту, которую наносят на опилки или маленькие кусочки меди, алюминия, латуни, стали или карборунда 1 3178 [c.357]

    Для поглощения излучения применяют ребра ряда специфических форм. Хотя при кипении воды температура стенки гладкой трубы остается достаточно низкой, существуют причины, препятствующие использованию ребер в таких системах. Основания ребер значительно холоднее, чем их вершины. Для того чтобы вершины ребер выдерживали высокие температуры, их необходимо изготавливать из стали с повышенным содержанием хрома, что увеличивает допустимые температуры их эксплуатации. Для повышения допустимой температуры до 870— 925°С требуется сталь, содержащая 27% хрома. Для того чтобы допустимая температура составляла около 1000°С, требуется нержавеющая сталь с содержанием 18% хрома и 8% никеля. При этом не только возрастает стоимость материала, но, что, пожалуй, самое существенное, вследствие увеличения содержания хрома и никеля происходит значительное уменьшение теплопроводности. В табл. 1.1 приведены данные [c.46]


    Электролитические хромовые покрытия отличаются высокой твердостью, лрочностью сцепления с основным металлом, коррозионной стойкостью, хорошей теплопроводностью и теплостойкостью. В технике нашли применение блестящие, молочные и переходные между ними дымчатые покрытия хрома (рис. И). [c.112]

    С повышением температуры термообработки теплопроводность электролитического хрома увеличивается от 0,064 при температуре 60° С и 0,082 при температуре 200° С до 0,13 кал/(с-см-°С) при температуре 400° С. [c.116]

    Многие легирующие элементы (титан, ванадий, алюминий, вольфрам, медь, молибден, хром, олово, марганец, никель) повышают твердость Б. ч., кремний и сера уменьшают ее. Увеличение содержания цементита снижает теплопроводность чугунов, вследствие чего они склонны к образованию холодных трещин. Б. ч. отличаются хорошей жидкотекучестью, повышающейся с увеличением содержания углерода и кремния. Однако значительная линейная усадка и грубая первичная структура обусловливают повышенную склонность Б. ч. к образованию горячих трещин.Наибольшей износостойкостью характеризуются Б. ч., содержащие 12—24% Сг (рис., г). Чугуны, содержащие 34% Сг и [c.126]

    Их мех. св-ва улучшают нормализацией, закалкой и отпуском. Из таких чугунов изготовляют блоки цилиндров, станины, поршневые кольца, гильзы, поршни, коленчатые и распределительные валы, головки различных двигателей, корпуса, штампы. К износостойким (табл. 1 иа с. 687) относятся средне- и высоколегированные (хромом, никелем, молибденом) чугуны, характеризующиеся мартенситной структурой и твердыми карбидами. Эти чугуны идут на изготовление деталей, эксплуатируемых при интенсивном абразивном изнашивании. Для получения необходимой структуры и св-в чугуны иногда подвергают закалке, обработке холодом (см. Холодом обработка металлов). Распространен износостойкий чугун нихард (см. также Износостойкий чугун). Антифрикционные чугуны относятся к низколегированным. Кроме высокой износостойкости, они отличаются небольшим коэфф. трения, высокой теплопроводностью, хорошей обрабатываемостью, прирабатывае-мостью, сопротивлением задирам. Такие св-ва обусловливаются наличием в структуре мягкой основы (перлита, феррита) и сфероидальных карбидов или фосфидной эвтектика. Различают серые (марки АЧС), ковкие (марки АЧК) и высокопрочные (марки АЧВ) антифрикционные чугуны (табл. 2). Их легируют хромом (до 0,4%), никелем (до 0,4%), титаном (до 0,1%), медью (0,3—1,5%), сурь- [c.688]

    МЕДИ СПЛАВЫ — сплавы на ото ве меди. В виде бронзы применялись за 3000 лет до н. э. В жидком состоянии медь сплавляется со многими элементами, с большинством из них — в любом соотношении. Лишь вольфрам, молибден, осмий, рутений и тантал практически не сплавляются с нер. В твердом состоянии макс. растворимость элементов (в альфа-твердом растворе меди) изменяется в очень широких пределах от сотых и десятых долей процента (хром, ниобий, свинец, ванадий, цирконий) до процентов (серебро, алюминий, мышьяк, бериллий, кадмий, кобальт, железо, магний, кремний, титан и др.) и десятков процентов (индий, олово, цинк). Неограниченно растворяются никель, золото, марганец, палладий и платина. Однако с золотом, марганцем, палладием и платиной М. с. в твердом состоянии претерпевают превращения. С увеличением концентрации легирующего элемента в альфа-твердом растворе меди повышается мех. прочность сплавов их теплопроводность и электропроводность уменьшаются (менее всего при легировании серебром). К вредным примесям относятся висмут, сурьма, свинец и углерод (в медноникелевых сплавах), к-рые приводят к хрупкости. Стойкость против коррозии М. с. зависит от природы легирующего элемента и окружающей среды. Повышают стойкость никель, олово и алюминий. С понижением т-ры раст  [c.780]

    Электронная теплоемкость хрома "=[1,4 мДж/(моль-К )] / . Теплопроводность X в зависимости от температуры  [c.371]

    Все вышесказанное в сочетании с чрезвычайно высокой твердостью и хорошей теплопроводностью (табл. 1) делает карбиды хрома перспективными материалами, особенно в условиях, предъявляющих к материалу жесткие износостойкие и жаростойкие требования. Ценность карбидов хрома как конструкционных материалов со временем, очевидно, значительно возрастет благодаря возможности изменять путем легирования в широких пределах их коррозионные, физические, механические и другие свойства. Так, имеется указание[161] О разработке карбидов на основе хрома, содержащих никель [c.55]

    Некоторыми исследователями изучалось влияние обработки кристалла на свойства рубина [136—142]. Разработаны методы определения хрома в рубине [143—144]. Берман, Фостер и Зай-ман [145] исследовали теплопроводность искусственных кристаллов сапфира при низких температурах. Мекке [404] при помощи инфракрасных спектров обнаружил в сапфире присутствие радикала ОН. [c.300]

    Толщина слоев футеровки рассчитывается по теплопроводности материалов и допустимым температурам на границе слоев. При этом принимается, что максимальная температура минеральной шлаковой ваты не должна превышать 780 °С, а каолиновой обычной — 1260 °С, а с добавкой оксида хрома — 1450 °С. [c.723]

    Согласно недавнему предложению [7], 2—3 г стальной стружки прессуют при давлении около 12 т/см в медном цилиндре весом 40 г, диаметром 20 мм и толщиной 15 мм. Медь является связующим веществом с хорошей теплопроводностью, и поэтому таблетки из стали получаются компактными и легко затачиваются. Кремний и хром могут определяться по аналитической кривой, построенной с помощью литых стальных образцов, в то время как для других компонентов (N1, Мп) аналитические кривые должны строиться по стандартным образцам, спрессованным тем же способом, что и пробы. [c.18]


    Теплоемкость хрома с повышением температуры непрерывно возрастает (табл. 134), а теплопроводность уменьшается (табл. 135). Коэффициент термического линейного расширения хрома, карбида и дисилицида хрома с ростом температуры увеличивается (табл. 136). Особенностью хрома является высокая упругость его паров [c.85]

    Процесс сварки труб из центробежнолитых трубных заготовок отличается рядом особенностей вследствие специфических свойств аустенитных хромоникелевых сталей. Аустенитная сталь типа НК-40 характеризуется электрическим сопротивлением, примерно в 5 раз большим, чем обычных углеродистых сталей, и низкой теплопроводностью металла, что определяет выбор методов и режимов сварки. Химический состав хромоиикелевых сталей также оказывает влияние на происходящие металлургические процессы сварки. Высокое содержание хрома в сплаве делает его взаимодействие с кислородом и рядом оксидов (МпО п 5102) достаточно активным, что вызывает интенсивные марган-цево-кремневосстановительные процессы, сопровождающиеся окислением значительных количеств хрома. Другие элементы, входящие в жаропрочный сплав (Ре, N1, Мп, 51, 5, Р, N и др.), при сварке могут образовывать различные эвтектики, карбиды, нитриды, интерметаллиды. Образование в металле новых фаз вызывает появление структурных напряжений, особенно металлов центробежнолитых трубных заготовок с характерной анизотропной дендритной структурой. Наконец, при сварке в результате воздействия высоких температур происходит укрупнение зерен в структуре металла и его разупрочнение при комнатной температуре, что ухудшает эксплуатационные свойства труб. [c.33]

    Условия опыта. Длина колонки 1 м, внутренний диаметр 4 мм. Скорость потока газа-носителя (аяот) 30 мл/мин. Температура комнатная (20° С). Количество образца для анализа 0,5 мл. Твердый носитель — ИНЗ-600 или сферо-хром-1, или сферохром-2, зернение 0,25—0,5 мм. Неподвижная фаза для распределительной колонки — вазелиновое масло (30% от массы носителя). Сорбент для адсорбционной колонки — силикагель МСК- Токовая нагрузка на плечи детектора по теплопроводности (катарометра) 100 ма. [c.101]

    Свойства сплавов. Сплавы сохраняют хорошую электрическую проводимость, теплопроводность и другие присущие металлам свойства. Однако их свойства не складываются как среднее арифметическое из свойств сплавляемых компонентов. Наоборот, температуры плавления сплавов ниже, чем у исходных металлов. Например, сплав Вуда плавится пр11 75 "С, а температура плавления самого легкоплавкого его компонента — олова 232 С. Сплав Деварда [50% (мае.) меди, 45% (мае.) алюминия и 5% (мае.) цинка] легко растирается в порошок и вытесняет водород из воды, хотя ни один из исходных металлов этим свойством не обладает. Очевидно, у сплавов появляются новые свойства, возникают новые качества. Как правило, сплавы более тверды, чем исходные металлы. Например, твердость латуни составляет 150 условных единиц, а исходных компонентов — меди и цинка — соответственно 40 и 50. Удельное электрическое сопротивление сплавов обычно выше, чем у исходных чистых металлов. Например, у нихрома [20% (мае.) хрома + 80% (мае.) никеля] сопротивление 110-10 , у хрома 15-Ю , а у никеля только 7 10" Ом-см. [c.267]

    N1) сильно повышает прочность и понижает вязкость. Стали аустенитиого класса характеризуются высокой вязкостью и низкой прочностью и твердостью. в сочетании с хромом повышает прочность и пластические свойства конструкционных сталей. Снижает теплопроводность. Повышает сопротивление коррозии на воздухе, в морской воде и некоторых кислотах. Увеличивает прокаливаемость. Способствует появлению отпускной хрупкости [c.17]

    Монокристаллические материалы составляют основу современной полупроводниковой и вычислительной техники, оптических квантовых генераторов, методов голографии. Искусственные монокристаллы получают различными способами из расплавов, рас-,1 . парообразной или твердой фазы. В первом твердотельном х /ооре, построенном в 1960 г., в качестве рабочего элемента использован монокристалл рубина. Рубин — это кристалл корунда (а-АЬОз), содержащий примеси ионов хрома, Сг+ . Присутствие ионов хрома придает кристаллам корунда красную окраску. В оптических квантовых генераторах (ОКГ) чаще всего применяют бледно-розовый рубин с содержанием хрома около 0,05%. При повышении количества хрома окраска становится уже ярко-красной, а в дальнейшем переходит в зеленую. Кристаллы рубина по своим физико-химическим свойствам в определенной степени уникальны и отвечают всем требованиям, предъявляемым к материалам для ОКГ. Они обладают высокой теплопроводностью, что позволяет избежать их саморазогрева во время работы, имеют высокую оптическую и механическую однородность, исключающую паразитное поглощение и рассеяние энергии, обладают высокой термической, механической и химической стойкостью. Монокристалл рубина для ОКГ должен быть длиной от 50 до 300 мм и диаметром 5—25 мм. Кристаллы такого размера получают синтетическим путем. Одним из наиболее распространенных методов синтеза монокристаллов рубина остается способ, предложенный в 1891 г. Вернейлем. Ультрадисперсный порошкообразный оксид алюминия, легированный оксидом хрома (1П), попадает в пламя кислородно-водородной горелки, где температура достигает 2000 °С, плавится и опускаете) на расплавленную верхнюю часть [c.158]

    Хорошие клеевые композиции получают [142], сочетая АФС с 2гОг и порошком титана (Осж после 600 °С — 250 МПа) или хрома. Порошки металлов в этом случае не являются инертным наполнителем и образуют аморфные кислые фосфаты. В высокотемпературные клеи и массы на основе АФС вводят иногда и графит. Это позволяет регулировать теплопроводность шва или композиционного материала. Так, известно использование смеси наполнителей АЬОз и графита. Клеи на основе АФС + корунд (размер зерна <20 мкм, корунд/АФС= 1 2 р = 1,85 г/см и влажность w = 27 %) применяют для склеивания графита с графитом и графита с корундовым огнеупором. После обжига склеенной конструкции прочность при сдвиге составляла около 2,7 МПа. При склеивании стали с корундом клеем на основе АФС + корунд прочность на сдвиг растет в интервале 500—1300°С, достигает максимума при 1100 °С (6—14 МПа), причем более высокая прочность наблюдается при использовании АФС с 50 %-ной условной степенью нейтрализации Л/[Л/ = 0% — соответствует Н3РО4, Л/= 100 % — получению А1 (РО4) ], Специфический термостойкий клей получают, сочетая АФС с оксидом алюминия, высокоглиноземистым цементом, оксидом хрома (III). Такой клей отвердевает при 120 °С и работает до 2000 °С, Использование фосфатных связок в качестве клеев рассмотрено в работе [143]. [c.119]

    Пример 25. Определить уменьшение величины коэффициента теплопередачи в теплообменнике, у иоторого поверхность теплообмена из легированной стали заменена стеклянной. Коэффициенты теплоотдачи следующие со сто роны греющей среды С] = 3000 ккал м час °С, со стороны налреваемой среды вг = = 2000 ккал л час С. Толщина (металлической стенки б мм, стеклявной 7 мм. Коэффициент теплопроводности хром оникелевой стали, согласно табличным данным. равен X = 24 ккал/м час С, а стекла X = 0,64 ккал/м час °С. [c.157]

Рис. XVIII. 5. Изменение теплопроводности сталей, отожженных при 900 °С(/) и 1100 °С (2), от содержания хрома в них. Рис. XVIII. 5. <a href="/info/927226">Изменение теплопроводности</a> сталей, отожженных при 900 °С(/) и 1100 °С (2), от содержания хрома в них.
Рис. XVIII. 6. Изменение теплопроводности сплавов железа с хромом в зависимости от содержания последнего Рис. XVIII. 6. <a href="/info/927226">Изменение теплопроводности</a> <a href="/info/4726">сплавов железа</a> с хромом в зависимости от содержания последнего
    ХРОМИСТАЯБРОНЗ А-брон-за, легированная хромом. Наиболее распространена X. б. марки БрХ0,5 (0,4—1,0% Сг, остальное — медь). Ее плотность 8,9 г см , т-ра плавления 1080° С, удельное электрическое сопротивление (в отожженном состоянии) 0,02 ом-мм /м, коэфф. теплопроводности 0,8 кал/см-сек-град, модуль норм, упругости 13 800 кгс/мм , предел текучести (после старения и холодного деформирования) 40 кгс/мм" , относительное удлинение 10—12%, относительное сужение 40—45% Я.В = 130 ч- 150. X. б. отличается хорошими мех. св-вами, повышенной т-рой рекристаллизации, высокой электропроводностью, жаропрочностью, легко поддается обработке в горячем и холодном состоянии. Хром ограниченно растворим в [c.701]

    Среди металлов серебро % == 1,0 кал/см-сек-град при 20°) и медь (0,94) отличаются особо высокой теплопроводностью [15]. Если требуется металл с возможно меньшей теплопроводностью и достаточной, прочностью, то применяют такие сплавы, как нейзильбер (0,06) или контрацид (0,03) и хромай. Очень незначительной теплопроводностью обладают также В1, 5Ь и Hg (0,02). С составом и прочими свойствами сплавов можно ознакомиться в приведенной литературе. Данные о свойствах и методах обработки щелочных и щелочноземельных металлов приведены в разд. 1.9. [c.12]

    Предъявляемым требованиям для осуществления пиролизных процессов при разных температурах удовлетворяют металлические материалы. Они являются компактными, плотными, теплопроводными, термически устойчивыми с удовлетворительными данными по механическим свойствам. Металургическим путем из них можно получать трубы и использовать их в качестве реакторов для пиролиза углеводородов при температурах, при которых эти реакторы обеспечивают ведение процесса пиролиза, не разрушаясь сами от действия газовой коррозии. Металлические материалы удовлетворяют многим техническим требованиям и условиям эксплуатации их в пирогенных установках. Однако в высокотемпературных пиролизных процессах могут быть применимы только высокохимически стойкие металлические материалы. Нержавеющие стали с содержанием 8, 10—12, 14% N1 и 18% Сг, с 25% N1 и 20% Сг, остальное железо, применяемые для пиролиза углеводородов при температурах 750° и выше, легко окисляются, они взаимодействуют с серой и разрушаются, науглероживаются и охрупчива-ются сталь содержит в своем составе дорогостоящий никель, более нужный в других отраслях техники. По стоимости нержавеющая сталь дороже в Р/г—2 раза железо-хромо-алюминиевого сплава № 2. [c.327]

    Частичная замена линоксина В1 линолеумном цементе может быть достигнута в)ведением некоторых коллоидных металлических солей, как, например, еафтен тов алюминия, железа, хрома и т. д. Ф Для расширения линолеумиого производства, помимо исходных органических материалов, необходимых для образования органического связующего — линоксина и смол, громадное зяачение имеет органический наполнитель — пробковая мука. Применяя древесную муку или целлюлозные наполнители, нельзя получить слоистый материал, по своим свойствам отвечающий линолеуму с Цробков ой мукой, в особенности в отношении веса, теплопроводности и т. д. [c.301]

    Электроды дуговых плазмотронов — единственная их расходуемая часть. Электроды могут быть выполнены из меди и медных сплавов, вольфрама, циркония, графита и других материалов в зависимости от конструкции плазмотрона, его назначения и пр. Стержневой (фронтальный) электрод (нри прямой полярности — катод) выполнен чаш е всего из торированного или лантанированного вольфрама (для уменьшения работы выхода электрона). Выходной электрод такого плазмотрона (анод при прямой полярности) имеет трубчатую форму и изготавливается из меди, имеющей высокую теплопроводность. Если оба электрода имеют трубчатую форму, то они обычно выполнены из меди. Легирование меди серебром приводит к уменьшению потерь металла за счет окисления это особенно эффективно при работе в кислороде или кислородсодержащих средах. Легирование меди цирконием или хромом увеличивает ее твердость и устойчивость к окислению. Электроды плазмотронов охлаждаются очищенной от растворимых солей водой при повышенном давлении (4 15 атм). Для некоторых приложений применяют деионизованную воду. Расход охлаждающей воды — 40 1000 л/мин в зависимости от параметров плазмотрона. [c.71]


Смотреть страницы где упоминается термин Хрома теплопроводность: [c.82]    [c.83]    [c.84]    [c.263]    [c.107]    [c.243]    [c.119]    [c.56]    [c.364]    [c.599]    [c.764]    [c.85]    [c.96]    [c.272]    [c.218]    [c.85]   
Тугоплавкие материалы в машиностроении Справочник (1967) -- [ c.139 ]




ПОИСК





Смотрите так же термины и статьи:

Хром и его сплавы Теплоемкость, коэффициенты теплопроводности и линейного расширения хрома



© 2024 chem21.info Реклама на сайте