Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хиноны из углеводородов

    Хинон Углеводород т. пл. Выход, % Примечания [c.349]

    Фталевый и малеиновый ангидриды, хиноны Углеводороды, содержащиеся в топливе, и продукты неполного их сгорания [c.14]

    При окислении углеводородов продолжение цепи ведут, чередуясь, радикалы ROa- и R-. Поэтому обрыв цепей возможен по реакции ROa- с акцепторами этих радикалов и по реакции R- с акцепторами алкильных радикалов X. Из результатов исследований радикальной полимеризации в качестве акцепторов радикалов R- хорошо известны такие соединения, как хиноны, нитросоединения, стабильные нитроксильные радикалы, молекулярный иод. Такие соединения тормозят окисление, но для заметного эффекта их приходится вводить в значительной концентрации. Связано это с тем, что с обрывом цепи по реакциям [c.116]


    Хиноны. Известно, что хиноны относятся к группе слабых ингибиторов окисления углеводородов. Они обрывают цепь окислительного процесса, реагируя с углеводородными радикалами [25, с. 241]  [c.177]

    При окислении ароматических углеводородов получают карбоновые кислоты ароматического ряда и их ангидриды, хиноны, гидропероксиды, при разложении которых образуются фенолы, [c.36]

    Сравнительно немного аценафтена (десятки тонн) потребляется в производстве аценафтенхинона, служащего сырьем для синтеза наиболее важного из группы индигоидных красителей — тио-индиго алого Ж. Это краситель (красивый алый цвет) для хлопка, вискозного волокна, шерсти и шелка. Окраски отличаются стойкостью к мокрым обработкам и светостойкостью. Хинон получают, окисляя углеводород, растворенный в триэтиленгликоле, нитрозилхлоридом [149, с. 391—392]. Можно окислять в присутствии солей кобальта, марганца и брома в среде органических кислот [169]. Такой процесс экономически оправдан при достаточно крупных масштабах производства. [c.110]

    Углеводород расходуется полностью, причем часть его окисляется в СО2 и Н2О. Помимо основных продуктов, при окислении нафталина образуются хинон, малеиновая и бензойная кислоты. При окислении о-ксилола образуется большее количество малеиновой и бензойной кислот, а также некоторое количество фталимида /35/, Выход фталевого ангидрида в расчете на исходный углеводород составляет 93-97% /14/, а на некоторых недавно построенных заводах - еше выше. Следует заметить, что на заводах, производящих фталевый ангидрид, каталитические реакторы занимают относительно неболь- [c.305]

    Основным ( ктором воздействия добавок считают их химический состав (при постоянном расходе добавок). Установлено, что парафиновые углеводороды практически не влияют на коксуемость углей, а вещества, в состав которых входит кислород (фенольные или хинонные группы, гетероциклы) ухудшают коксуемость шихт. Азот и азотсодержащие соединения не способствуют повышению коксующих свойств углей. В то же время высококонденсированные вещества типа асфальтенов, которые в больших количествах содержатся в каменноугольном пеке и тяжелых остатках переработки нефти, улучшают коксуемость, отмечается, что спекающие добавки эффективны в том случае, если содержат асфальтенов ( -фракция) не менее 30—40%, карбидов ((Х-фракция) не более 30—40% и имеют выход летучих вешеств не выше 50—55%. Учитывая, что зарождение и образование мезо эы связано с наличием в пластической массе определенного типа соединений (структур) к наиболее эффективным добавкам относят продукты, имеющие в своем составе зародыши мезофазы или образующие ее при кар -низации. Эффективность действия добавок зависит Также от спекающих свойств углей. Ввод добавок к углям, обладающим достаточной спекаемостью (Ж, К, КЖ) не приводит к какому-либо заметному положительному эффекту. Для углей низкой спекаемости (Г, ОС, СС) и неспекающихся (Т, Д) действие добавки весьма ощутимо. [c.215]


    Переходя к вопросу о причинах торможения реакции окисления нафтеновых углеводородов ароматическими, необходимо прежде всего отметить, что образующиеся при окислении ароматических углеводородов фенолы, хиноны и смолы являются активными антиокислителями [2]. [c.279]

    Процесс этот в настояш,ее время получил очень широкое распространение. Им пользуются для конденсации разнообразных углеводородов, фенолов, нафтолов и их производных с различными альдегидами, кетонами, кетокислотами, хинонами и другими соединениями. [c.478]

    По такому механизму действуют хиноны, нитроксильные соединения, иод. Но поскольку радикал R быстро реагирует с кислородом, а концентрация R в окисляющихся углеводородах мала, то этот тип ингибиторов обладает низкой эффективностью в реакциях окисления. [c.27]

    Для очистки органических соединений возгонка удобна в том случае, когда возгоняется лишь основной продукт, а примеси не испаряются. Возгонка применяется для очистки хинонов, многоядерных углеводородов и некоторых других соединений. Ее ведут при температуре, которая ниже точки возгонки данного вещества . Это обеспечивает получение чистого продукта. [c.26]

    Дикетоны ароматического ряда с кетонными группами в ядре называют сокращенным названием ароматического углеводорода, добавляя окончание -хинон или -дихинон. [c.19]

    Дикетоны ароматического ряда с кетонными группами в ядре называют сокращенным названием ароматического углеводорода, добавляя окончание -хинон. Положения кетонных групп указывают номерами или соответствующими терминами (о-, М-, /1-)  [c.221]

    При изучении электродных процессов с участием органических веществ необходимо учитывать возможность образования свободных радикалов в качестве промежуточных продуктов реакции. Радикалы обнаружены при электровосстановлении ненасыщенных углеводородов, хинонов, карбонильных и нитросоединений и других классов органических веществ на ртути и других металлах. Образование радикалов происходит и при реакциях электроокисления. [c.386]

    Окисление ароматических углеводородов до хинонов. [c.297]

    При окислении некоторых полиядерных углеводородов О бра-зуются хиноны  [c.137]

    Правило Хюккеля применимо для углеводородов с конденсированными (сочлененными) кольцами. Определите, какие соединения являются ароматическими объясните, почему антрацен и фенантрен менее ароматичны , чем бензол например, легко окисляются СгОз до хинонов. [c.120]

    Окислением ароматических колец могут быть получены фенолы, хиноны и карбоновые кислоты, весьма важные для синтеза промежуточных продуктов, красителей и полимеров. Окисление ароматических колец, как правило, идет значительно труднее, чем окислительные реакции в боковых цепях. Из ароматических углеводородов бензол, в котором электронная плотность полностью выравнена, окисляется труднее всего. Нафталин, в котором эта выравненность нарушена, окисляется значительно легче. Еще легче по тем же причинам идут эти процессы с антраценом и фенантреном. Во всех случаях электронодонорные заместители в кольце облегчают течение реакций окисления. [c.323]

    Прямым окислением ароматических углеводородов не всегда удается получать хиноны с удовлетворительным выходом. Например, из двух простейших хинонов 1,2-бензохинон, имеющий очень высокий редокс-потенциал, можно получить только окислением пирокатехина оксидом серебра в строго безводном растворителе. Находящий промышленное применение и значительно более устойчивый [c.326]

    Ароматические углеводороды окисляются в хиноны (например, антрацен превращается в антрахинон ). [c.659]

    Полициклические и ароматические углеводороды под действием со лей хлорноватой кислоты окисляются до хинонов (например, антрацен дает антрахинон с выходом около 90% ). [c.660]

    Хиноны из ароматических углеводородов [c.26]

    Некоторые ароматические углеводороды можно в определенных условиях окислить до ХИНОНОВ, являющихся производными п- или о бензохинона  [c.26]

    Образование хинонов из углеводородов всегда происходит легче, если двойные связи в а, р-положении к карбонильной группе стабилизированы алкильными и в особенности арильными группами. Так, например, бензол лишь в особо специфических условиях с трудом удается прямо окислить в хинон (с помощью перекиси серебра), антрацен же довольно гладко окисляется в антрахинон, фенантрен —в фенантренхинон нафталин по окисляемости занимает промежуточное положение. Окисление может быть осуществлено хромовой кислотой, перекисью водорода или кислородом воздуха в присутствии пятиокиси ванадия. Прп окислении хромовой кислотой в сравнимых условиях были получены следующие продукты  [c.27]

    В приведенной ниже методике окисления углеводородов в хиноны используется большой избыток хромовой кислоты в противном случае остается непрореагировавшее исходное вещество, затрудняющее очистку. При этом следует прервать реакцию в момент использования всего углеводорода, чтобы предотвратить дальнейшее окисление. [c.27]

    Кроме того, в составе мембран обнаружено небольшое количество углеводов. Как правило, липиды и белки составляют 95 % и больше вещества мембран. Главным липидным компонентом бактериальных мембран являются фосфолипиды — производные 3-фосфоглицерина. Хотя у прокариот найдено множество различных фосфолипидов, набор их в значительной степени родо- и даже видоспецифичен. Широко представлены в бактериальных мембранах различные гликолипиды. Стерины отсутствуют у подавляющего большинства прокариот, за исключением представителей Фуппы микоплазм и некоторых бактерий. Так, в ЦПМ АсИо1ер1азта содержится 10—30 % холестерина, поглощаемого из внешней среды, от общего содержания мембранных липидов. Из других фупп липидов в мембранах прокариот обнаружены каротиноиды, хиноны, углеводороды. [c.46]


    Природа промежуточных продуктов, образующихся в определенных условиях, зависит от структуры окисляемых ароматических углеводородов (моноциклические, полициклические, алкиларомати-ческие и др.). Поэтому кроме продуктов, перечисленных выше, можно получить и многие другие соединения, например фенолы, альдегиды, кетоны, хиноны и карбоновые кислоты. [c.169]

    Номенклатура некоторых циклических ди- и поликетонов имеет свои особенности. Издавна ароматические, полностью сопряженные дикетоны и тетракетоны получали названия добавлением к названию родоначального углеводорода или гетероцикла суффикса -ХИНОН [родоначальное название- иногда сокращается, как в случае антрахинона (43)]. По СА, как обычно, соединение (43) получает название антрацендион-9,10 (9,10-апШгасепес11опе). [c.144]

    Механизм действия. Действие антиокислителей в топливах основано на участии в процессах окисления углеводородов. Эти процессы развиваются по цепному механизму через свободные радикалы [6— 18], поэтому их развитие можно задержать, замедлив образование свободных радикалов или их последующие превращения. Антиокислители могут действовать несколькими путями, но всегда продукты, образующиеся из молекулы антиокислителя, должны быть менее активны, чем свободные радикалы, возникающие в системе и ведущие реакционные цепи. Во-первых, антиокислители могут взаимодействовать с алкильными радикалами, дающими начало окислительным цепям, предотвращая таким образом возникновение этих цепей [19]. Так действуют, например, хиноны [4, V. 1, сЬ. 4 17]. Во-вторых, анти-. окислители могут стехиометрически взаимодействовать с гидроперекисями [19], препятствуя образованию при их превращениях новых свободных радикалов, обуслов-. ливающих развитие цепей. Способность реагировать с молекулами гидроперекисей установлена для серосо- держащих антиокислителей, например диалкилсульфи-дов [11, 17, 18], производных меркаптобензтиазола и [c.69]

    При газофазном окислении смесей углеводородов — о-ксилола и нафталина, нафталина и мегилнафталинов, антрацена и фенантрена, нафталина и антрацена — удается не только использовать более дешевое и доступное сырье, но и повысить селектизность окисления в сравнении с окислением индивидуальных углеводородов [53, с. 86—104 56—58]. Высокая эффективность окисления смесей антрацена и фенантрена объясняется тем, что обладающий меньшим потенциалом ионизации антрацен сорбируется пре-имущест)вецно на активных центрах, ответственных за образование хинонов, и тем препятствует расходованию фенантрена. Медленнее окисляющийся фенантрен, в свою очередь, препятствует сорбции образовавшегося антрахинона на центрах, ответственных за глубокое окисление, и поэтому защищает антрахинон от сгорания. В итоге повышается селективность превращения антрацена в антрахинон и фенантрена во фталевый ангидрид. Последние легко разделяются фракционной конденсацией [59]. [c.41]

    Отмеченное выше противоречие возникло еще с довоенных лет и за последние годы не произошло принципиальных изменений в характере потребления и масштабах производства полициклических ароматических углеводородов, несмотря нЬ очень большой объем исследований, выполненных за этот период. Интерес к по-лициклическим ароматическим углеводородам определяется некоторыми особенностями их строения. Большинство их флюоресцирует при облучении, и кристаллические полициклические ароматические углеводороды используются как сцинтилляторы. Полициклические ароматические углеводороды и получаемые на их основе хиноны являются отличными хромоформными системами и служат сырьем для синтеза многочисленных красителей. [c.100]

    Высокие термическая стабильность и температура кипения полициклических ароматических углеводородов определяют их малую летучесть и повышенную термостойкость, стойкость к действию радиации полимерных материалов и пластификаторов, являющихся их производными. Повышенная по сравнению с моноцик-лическими ароматическими углеводородами реакционная способность облегчает получение полимерных материалов при взаимодействии полициклических ароматических углеводородов с формальдегидом [106]. При окислении полициклических ароматических углеводородов получаются разнообразные хиноны, ди- и полн- [c.100]

    Возможность получения, фенантренхинона газофазным окислением фенантрена воздухом ограничивается небольшим выходом хи-нона (3—5%), так как в обычных условиях происходит дальнейшее окисление хинона. Выход можно увеличить при существенном снижении степени конверсии фенантрена, так как углеводород, блокируя ответственные за полное сгорание центры катализатора, защищает хинон от глубокого окисления. Кроме того, выход фенантренхинона можно увеличить сокращением времени контакта до 0,02—0,10 с повышением содержания сульфата калия в катализаторе ВКСС и непрерывной модификацией катализатора небольшими дозами диоксида серы. В этих условиях в присутствии катализатора (соотношение УгОв Кг504= 1 4,5) получено 49% (от теоретического) фенантренхинона при степени конверсии фенантрена 50% [162]. [c.107]

    Аналогично протекает образование хинонов из ароматических углеводородов с конденсированными кольцами. Нафтохиноны, как и бензохиноны, получают окислением амино- или диоксипроизвод-ных, а также при парофазнсм окислении нафталина (стр. 225). Антра-хинон, имеющий огромное значение для синтеза ализариновых красителей, получали сперва некаталитическими методами (например, окислением антрацена хромовой смесью или азотной кислотой), которые, однако, уступили место различным каталитическим методам последние можно разделить на жидкофазные и парофазные. [c.213]

    Существует также ряд молекулярных соединениР хинонов с ароматическими аминами и тетрахлорхпнона с ароматическими углеводородами (например, с дуролом). Растворы изопрена и терпенов окрашиваются при действии хинонов, что указывает на образование в этих растворах продуктов присоединения (Пфейффер)  [c.706]

    Вторую большую и важную группу кубовых красителей составляют хиноны высококонденсированных циклических углеводородов, в поли-метиновой цепи которых атомы углерода иногда могут быть с успехом заменены атомами азота. Обычно бромпроизводные этих хинонов обладают наивысшей красяш,ей способностью и представляют наибольшую колористическую ценность. Первым в этом ряду красителей был получен флавантрон, или индантреновый желтый О, [c.735]

    Другая группа реакций конденсации циклопентадиена была открыта Дильсом и Альдером. Этот углеводород способен присоединяться обоими концами своей системы сопряженных двоЙ1 ых связей ко многим ненасыщенным молекулам тина -хинона, малеиновой кислоты, малеинового ангидрида и т. д., в результате чего можно получить большое число полициклических соединений, иапример  [c.789]

    Известны хиноны, родственные многоядерным конденсированным ароматическим углеводородам. В качестве примера приведем хиноны, имеющие циклические системы нафталина (стр. 346), например а-нафтохшон, и антрацена (стр. 349), как, например [c.374]

    В друпих случаях, отличающихся от отаисанного выше особого случая, нормальный потенциал может быть определвн путем потенциометрического титрования либо р аствора хинона восстановителем, либо раствора гидрохинона окислителем, так как средняя точка обеих кривых титрования соответствует эквивалентным количествам окислителя и восстановителя. Если в качестве стандартного полуэлемента применяется водородный электрод в том же раство рителе, в каком растворены органические реагенты, то нормальные потенциалы могут быть определены даже в спиртовых растворах с неизвестной концентрацией водородных ионов таким образом, этим методом могут быть охарактеризованы и хиноны, нерастворимые в воде. Нормальный потенциал является точным критерием окислительной способности хинона и, наоборот, восстановительной способности гидрохинона. Ниже приведены величины (определенные при 25°С) нормальных потенциалов хинонов, являющихся производными бензола и некоторых многоядерных углеводородов  [c.412]

    Кроме ароматических углеводородов можно аминировать амины, аминоспирты, азосоединения, нитросоединения, производные антрахинона и хиноны полйциклических, ароматических соединений, например дибензантрон и изодибензантрон. [c.283]


Смотреть страницы где упоминается термин Хиноны из углеводородов: [c.67]    [c.515]    [c.705]    [c.736]    [c.657]    [c.670]   
Органические синтезы. Т.2 (1973) -- [ c.2 , c.201 ]




ПОИСК





Смотрите так же термины и статьи:

Окисление углеводорода до хинона

Получение хиионов окислением циклических углеводородов. . — Получение хинонов окислением ароматических аминов

Углеводороды ароматические окисление в хиноны

Хиноны

Хиноны из ароматических углеводородов

Хиноны полициклические восстановление до углеводородов



© 2025 chem21.info Реклама на сайте