Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ванадий от других металлов

    Активность и селективность катализаторов повышается при введении в окислы металлов, содержащих молибден или ванадий, других металлов или металлоидов. Известно, что кристаллическое поле вокруг иона металла изменяет его энергетический спектр. Кроме того, введение второго элемента изменяет энергии связи и расстояния между атомами кислорода и металла. [c.345]


    Навеску стали (или чугуна) растворяют в кислотах, после чего раствор подвергают электролизу со ртутным катодом в слабокислой среде. В результате железо, хром, марганец и другие металлы осаждаются на ртутном катоде, образуя амальгамы, а титан, алюминий и ванадий в виде соответствующих ионов остаются 8 растворе. [c.446]

    Наряду со сходством имеются и различия в молекулярной структуре масел, смол и асфальтенов. Масла состоят из высокомолекулярных углеводородов, а также в случае сернистых нефтей из сероорганических соединений, близких по строению к высокомолекулярным углеводородам. Смолы и асфальтены содержат не только углерод, водород, серу, но и кислород и азот, ванадий, никель и некоторые другие металлы. Азот концентрируется преимущественно в асфальтенах, а кислород — в смолах. Суммарное содержание гетероатомов в них достигает 10% (и более). [c.11]

    Присутствие некоторых веществ даже в ничтожных количествах резко понижает активность катализатора пли совершенно уничтожает его действие другие, наоборот, будучи прибавлены к катализатору в определенном (оптимальном) количестве, увеличивают его активность, хотя сами по себе не являются катализаторами для данной реакции. Такие вещества (активирующие добавки) называются промоторами (активаторами) и служат как бы катализаторами для катализаторов . В нефтепереработке многие синтетические катализаторы используются с активирующими добавками. К ним относятся окислы циркония, тория, ванадия, бериллия, магния и многих других металлов. [c.22]

    Химия элементов триады У НЬ Та сходна с химией элементов предыдущей триады V и Та имеют валентную конфигурацию а НЬ конфигурацию у ванадия возможны состояния окисления +2, - -3, +4 и -Ь 5, но для ЫЬ и Та основное значение имеет только состояние окисления + 5 (хотя известны некоторые соединения, куда они входят в состояниях окисления -I- 3 и -1-4). Подобно Т1, 2г и НГ, металлы триады У-ЫЬ-Та легко реагируют с К, С и О при высоких температурах, и по этой причине их трудно получить с использованием процесса высокотемпературного восстановления, который применяется для получения Ре и других металлов. [c.441]

    Карбиды ванадия, ниобия и тантала образуются при непосредственном взаимодействии металлов с углеродом или путем вытеснения других металлов из их карбидов, например  [c.279]

    Первая стадия имеет целью перевод соединений ванадия, содержащихся в катализаторе, в пятиокись ванадия и концентрирование последней на поверхности гранул катализатора. Для этого катализатор обрабатывают горячим воздухом, в результате чего соединения ванадия окисляются до пятиокиси ванадия, которая обладает летучестью и при высоких температурах в основном сосредотачивается на доступной внешней поверхности гранул. Влияние температуры и длительности окисления воздухом на количество ванадия, отложившегося на внешней поверхности катализатора, показано на рис. 96 [373]. Как это видно, равновесие между содержанием ванадия на поверхности катализатора и в матрице устанавливается через 4 ч. Пятиокись ванадия можно удалить с поверхности катализатора промывкой его разбавленным водным раствором аммония или оставить и удалить в последующих стадиях вместе с другими металлами. [c.239]


    Нефтяные остатки характеризуются высокими плотностью и содержанием серы, высокомолекулярных конденсированных циклических соединений, а также заметным содержанием ванадия и других металлов. Это особенно характерно для нефтепродуктов, получаемых при переработке сернистых нефтей. При гидроочистке высокомолекулярные углеводороды легко адсорбируются катализатором, а металлы, особенно ванадий и никель, отлагаются в его порах. Несмотря на это появляется все больще патентных и рекламных публикаций о возможности гидрообессеривания нефтяных остатков, что характеризует интерес к этой проблеме во всем мире. Помимо прямого каталитического гидрообессеривания нефтяных остатков предложено использовать и другие методы. В частности, заслуживает внимания схема, разработ-анная Нельсоном [152]  [c.254]

    В мире есть уже и практический опыт непосредственного извлечения ванадия из нефти. Такие установки работают в Швеции, Венесуэле, Канаде... И на очереди осуществление еще более интересных проектов. Из нефти попутно будут добывать не только ванадий, никель, но и, вероятно, рений, скандий, бериллий, серебро, галлий, германий и другие металлы. [c.132]

    К сегодняшнему дню синтезированы карбонилы не только никеля и железа, 1Ю и других металлов вольфрама, хрома, молибдена, ванадия, рения и других. Все это весьма летучие соединения, температуры распада которых лежат гораздо ниже температур плавления соответствующих сплавов и металлов. Именно это и дало возможность использовать карбонилы металлов для получения металлических покрытий и изделий. .. [c.133]

    Помимо ртути, при добавлении сульфида натрия нз раствора удаляются также соединения хрома, ванадия, молибдена и других металлов, вредных для электролиза, [c.176]

    Практическое значение имеет применение ртутного катода для отделения большого количества одного или одновременно нескольких металлов, переходящих в амальгаму, от примеси другого металла, остающегося в растворе. Такие элементы, как алюминий, титан, цирконий, фосфор, мышьяк, ванадий и др., не образуют амальгам и остаются при электролизе с ртутным катодом в растворе. Другие металлы, как железо, хром, медь, висмут, серебро, кадмий, молибден, цинк, олово, никель, кобальт и др., легко и количественно осаждаются на ртутном катоде, для электролиза с электролиза применяют различные приборы, [c.202]

    ВИРИРОВАНИЕ ФОТОГРАФИЧЕСКОЕ (тонирование) — превращение черно-белого серебряного изображения в окрашенное с художественной целью или для увеличения плотности и контрастности изображения. В. ф. осуществляют превращением серебра в окрашенное соединение заменой серебра другим металлом, осаждением на серебре соединений другого металла, окрашиванием серебра красителем, изменением дисперсности серебра. Для осуществления В. ф. изображение сначала отбеливают раствором окислителя и галогенида щелочного металла. Образовавшийся галогенид серебра обрабатывают растворами сульфидов для окрашивания изображения в желто-коричневый цвет заменяют серебро золотом, платиной, ураном, свинцом, ванадием и др. Цветовой оттенок зависит от дисперсности серебра, температуры тонирующего раствора, продолжительности обработки. [c.54]

    Синтез ферроцена положил начало обширным исследованиям так называемых ценов других металлов ванадия, [c.43]

    В чугуне углерода содержится до 1,7% и более, в стали— от 0,3%) до 1,7%), а в ковком железе — менее 0,3%. Однако существуют специальные так называемые легированные стали, в состав которых, помимо железа и углерода, входят в определенных количествах хром, никель, вольфрам, молибден, ванадий, кобальт, титан и другие металлы. Введение тех или иных металлов в железо дает возможность получать стали с нужными свойствами (повышенной тугоплавкостью, прочностью, кислотостойкостью и т. д.). Так, хром повышает твердость стали и ее химическую стойкость никель увеличивает вязкость вольфрам сильно повышает твердость ванадий (0,2—0,5%) повышает твердость и вязкость молибден (0,15—0,25%) повышает упругость и улучшает свариваемость. [c.281]

    Другой ТИП пятичленных ароматических соединений составляют металлоцены, называемые также сэндвичевыми соединениями-, в них два циклопентадиенильных кольца расположены над и под ионом металла. Из соединений такого типа наиболее известен ферроцен (41) получены также аналогичные соединения кобальта, никеля, хрома, титана, ванадия и многих других металлов [75]. Ферроцен — устойчивое соединение, сублимируется при 100 °С и выдерживает нагревание до 400 °С. Два циклопентадиенильных кольца свободно вращаются [76]. С металлоценами проведены многие реакции ароматического замещения [77]. Получены металлоцены, содержащие два атома металла и три циклопентадиенильных кольца, известные как трехслойные сэндвичи [78]. Сообщалось о синтезе четырех- и даже пятислойных сэндвичей [79]. [c.72]

    Алюминотермия применяется для получения хрома, марганца, ванадия, титана, циркония и других металлов из их оксидов, а также для получения специальных сталей. [c.186]

    Металлохимия элементов VIB-группы. Хром, молибден и вольфрам по металлохимическим свойствам мало отличаются друг от друга, вследствие чего между собой образуют непрерывные твердые растворы. Поскольку они относятся к -элементам с дефектной -оболочкой, являются хорошими растворителями для других металлов. Хром образует непрерывные твердые растворы с p-Ti, V, a-Fe, которые, как и хром, обладают ОЦК решетками. Молибден не дает непрерывных растворов с железом, но зато непрерывно растворим в аналогах ванадия — ниобии и тантале. Вольфрам также образует непрерывные растворы с V, Nb, Та, но с титаном уже только ограниченные. [c.348]


    Первоначально этот реагент был предложен для осаждения меди, с чем и связано название его. Однако в настоящее время он гфименяется не для определения меди, а для осаждения катионов других металлов, например железа, ванадия, циркония, титана, олова, тантала, ниобия, четырехвалентного урана и др. [c.128]

    Кроме ванадия и никеля в остатках обнаружены натрий, кальций, магний, которые концентрируются во фракциях смол, железо (в асфальтенах), а также следы ишогих других металлов (медь, хром, титан, кобальт, молибден, свинец, олово, цинк, марганец и др.). [c.18]

    Имеются сообщения, что низкомолекулярные парафиновые углеводороды могут быть превращены в ароматические и непредельные не в условиях обычных процессов риформинга на платиновых катализаторах, а под низким давлением на некоторых других катализаторах. В частности, указывается, что процесс де-гидрогенизационного риформинга фракции Се—Сд может быть осуществлен на алюмохромовом катализаторе под давлением, близким к атмосферному, с рециркуляцией или без рециркуляции водорода. В качестве активного колшонента катализатора могут быть использованы также окиси ванадия и других металлов. [c.156]

    Содержание металлов в топливах для судовых ГТУ определяют атомноадсорбционным методом. Дистиллятные топлива, как правило, содержат менее 1-10 % (масс.) ванадия и других металлов. Исключение составляет натрий. [c.179]

    Соединения ванадия используют как катализаторы в производстве H2SO4, при окислении спирта, гидрогенизации олефинов, получении фталевого ангидрида, уксусной кислоты, ряда красителей и т. д. Карбиды ниобия и тантала вместе с карбидами некоторых других металлов являются исключительно термостойкими н твердыми материалами (т. пл. Nb 3500 °С, т. пл. ТаС 3900 °С), Изделия из них получают методом порошковой металлургии. [c.525]

    Алю/мииий используется в металлургии как восстановитель других металлов. Алюминотермический метод (см. гл. XIX, 9) широко используется для получения тугоплавких металлов —ванадия, хрома, марганца и др. Для этой цели применяется грубозернистый алюминиевый порошок. Алюминотермический метод используется также для сваривания металлических деталей. Для этого смесь порошкообразных алюминия и железной окалины (Ре )04), называемую термитом, поджигают с помощью запала. При этом происходит реакция [c.259]

    Титан почти или совершенно не взаимодействует со щелочными, щелочноземельными и редкоземельными (кроме скандия) металлами, т. е. не образует с ними ни соединений, ни твердых растворов, С остальными металлами титан взаимодействует, однако характер этого взаимодействия с разными металлами различен металлы, яьл.чющиеся аналогами титана и ближайшими его соседями по периодической системе, а именно цирконий, гафний, скандии, ванадий, ниобий, тантал, а также молибден и вольфрам, не образуют с титаном соединений, [го образуют непрерывные ряды твердых растворов другие металлы дают с титаном интерметалличе-ские соединения и ограниченные твердые растворы. [c.263]

    Существует мнение [45, 213], что в концентрациях менее 0,3 вес. % никель более вреден, чем другие металлы, но при более высоких концентрациях его действие соизмеримо с отравляющим эффектом ванадия, железа и меди. На рис. 67 приведены данные [45] о влиянии на активность и закоксовывание катализатора различных металлов. Авторы [45] считают, что отравляющее действие металлов, по-видимому, снижается в таком порядке никель> >железо>ванадий>медь>свинец. Другие исследователи предлагают следующий порядок никель>медь>железо>ванадий они даже приводят количественные соотношеия силы воздействия этих металлов никель 1,0 медь 1,0 железо 0,55 ванадий 0,091 [214]. При увеличении коксового фактора количественные соотношения несколько возрастают железо 0,66 ванадий 0,61 при увеличении выхода газа железо 0,66 ванадия 0,106. [c.155]

    Катализаторы, используемые в окислительных процессах, весьма разнообразны. ПрИлМеняются металлические катализаторы — платина и другие металлы группы платины па соответствующих носителях, окислы металлов — окислы ванадия, железа, хрома, молибдена, никеля и других металлов, промотировапные различными соединениями и сформованные в виде таблеток, гранул, сфероидальных зерен и т. н. В настоящее время стремятся металлические катализаторы заменить окиспыми. [c.138]

    Малая стоимость катализатора— определяющий фактор как для неподвижного, так и для взвешенного слоя, несмотря на то, что стоимость израсходованного катализатора (потери его) составляют, как правило, лишь незначительную часть себестоимости продукта. Снижение себестоимости катализатора достигается, в основном, заменой дорогостоящих пЛаТинБГ, серебра и других металлов, входящих тг сисгав "ксжтятшШЗГмасс, менее активными, но и более дешевыми окислами железа, хрома, ванадия и т. д. Тонкое диспергирование катализатора носителе также позволяет снизить стоимость. Большое значение в стоимости катализаторов имеет рационализация технологии, полное использование всех видов сырья, применение современной, интенсивной, непрерывно работающей аппаратуры [I]. [c.61]

    Большой научный интерес и практическую актуальность представляет знание качественного состава и концентрационного распределения в различных компонентах нефти металлов, содержащихся в нефтях в ничтожно малых количествах. Поскольку основная часть металлов концентрируется в смолисто-асфальте-повой части нефтей [18], то на примере бавлинской, гюргянской и ромашкинской нефтей был детально исследован вопрос о концентрационном распределении ванадия, никеля и других металлов в различных фракциях нефтей. Объектами исследования служили асфальтены, смолы различной степени разделения, откеро-спненная нефть и выделенные из нее углеводороды различной степени разделения [19]. Все компоненты нефти предварительно подвергались озолению , а полученная при этом зола подвергалась спектральному и химическому анализам. Никель определялся по методу Чугаева — Брунке [20], а ванадий — по методике Виноградова [21]. Содержание ванадия и никеля в разных ком-понентах высокомолекулярной части трех нефтей приведены в табл. 18 (см. также рис. 7). [c.62]

    Конечное содержание серы в прокаленном коксе из гудрона арланской нефти такое же, как в коксе из крекинг-остатка ромашкинской нефти, т. е. менее 1%. Остальные показатели в основном одинаковы, за исключением содержания ванадия (для арланского кокса в 1,5 раза выше), железа и других металлов. Повышенное содержание ванадия в обессеренном коксе объясняется высоким его содержанием в арланской нефти. Из-за этого такой кокс нельзя применять в алюминиевой промышленности. При выплавке алюминия ванадий, как и другие металлы, из кокса по- [c.155]

    Известно, что ванадий и другие металлы, входящие в состав металлоорганических соединений нефти, концентрируются в основном в асфальтенах. При удалении основной массы асфальтенов из гудрона арланской нефти содержание металлов в нем снижается. Из такого деасфальтированного гудрона можно получить кокс со сниженным содержанием ванадия и других металлов. С этой целью в качестве сырья коксования был испытан деасфальтизат, получаемый в процессе Добен , разработанном в БашНИИ НП. [c.156]

    Состав битумных материалов. Битумные материалы представ ляют собой сочетание сложных органических соединений. В низ содержатся различные количества парафиновых и ароматическиз углеводородов однако существовавшее предположение о преобла-i Дании в битумах чистых углеводородов оказалось ошибочным. Кроме углерода и водорода в них присутствуют относительно небольшие-количества азота, кислорода и серы. Эти элементы (один или дв атома) входят в состав больших молекул, и поэтому содержание в битуме неуглеводородных веществ довольно значительно. Установ . лено, что большая часть азота прочно удерживается в составе таких тяжелых молекул, и его нельзя удалить даже путем пиролиза. Большая часть серы в битуме представлена, вероятно, в виде серо-, органических соединений с высоким молекулярным весом, либо свя-. занных с основным азотом, либо адсорбированных на поверхности больших молекул. Кислород входит, по-видимому, в состав эфир -ных соединений. Железо, никель и ванадий присутствуют в неболь- ших количествах, а других металлов содержатся следы. [c.187]

    Купферон значительно более эффективен при осаждении катионов других металлов, в частности при анализе руд и сплавов, содержащих некоторые редкие элементы. Купферон широко применяется для осаждения ионов железа, ванадия, циркония, титана, олова, тантала, ниобия, четырехвалентного урана (ионы шестивалентиого урана не осаждаются) и др. Эти ионы осаждаются в сильнокислой среде, что позволяет отделить их от ряда других ионов, не осаждающихся в этих условиях. Таким образом названные выше ионы отделяют от алюминия, бериллия, марганца, никеля, шестивалентного урана, фосфатов и др. Осадки обычно прокаливают и взвешивают в виде окислов. [c.103]

    Т. применяют при сварке железных и чугунных изделий (напр., рельсов), как зажигательное средство и т. д. В некоторых сортах Т. вместе с Рвз04 содержатся оксиды других металлов (ванадия, хрома) они используются для получения феррованадия, феррохрома и т. д. (см. Алюминотермия). [c.247]


Смотреть страницы где упоминается термин Ванадий от других металлов: [c.45]    [c.20]    [c.426]    [c.39]    [c.88]    [c.89]    [c.310]    [c.181]    [c.214]    [c.118]    [c.113]    [c.134]    [c.486]    [c.488]    [c.55]    [c.131]   
Химико-технические методы исследования (0) -- [ c.499 ]




ПОИСК





Смотрите так же термины и статьи:

Другие металлы



© 2025 chem21.info Реклама на сайте