Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Осмотическое давление зависимость от температуры

    I. При температуре Т давление пара раствора концентрации с неизвестного нелетучего вещества в жидком растворителе равно Р Па плотность этого рствора Зависимость давления насыщенного пара от температуры над жидким и твердым чистым растворителем приведена в таблице (с. 167—170) 1) вычислите молекулярную массу растворенного вещества 2) определите молярную и моляльную концентрации раствора 3) вычислите осмотическое давление раствора 4) постройте кривую Р = f Т) для данного раствора и растворителя 5) определите графически температуру, при которой давление пара над чистым растворителем будет равно Р Па 6) определите графически повышение температуры кипения при давлении Р раствора данной концентрации с 7) вычислите эбуллиоскопическую постоянную всеми возможными способами и сравните эти величины между собой при нормальной температуре кипения 8) определите понижение температуры замерзания раствора 9) вычислите криоскопическую постоянную. [c.206]


    Зависимость осмотического давления разбавленных растворов от температуры показана в табл. VII, 5, из которой видно, что осмотическое давление пропорционально абсолютной температуре. Если вычислить значение [c.243]

    Что касается влияния вида растворенного вещества и растворителя, то оказалось, что в растворах, к которым применимо последнее уравнение, осмотическое давление совсем не зависит ни от вида растворенного вещества, ни от растворителя и коэффициент пропорциональности К в этом уравнении является универсальной постоянной, которая к тому же численно равна газовой постоянной / , Таким образом, зависимость осмотического давления от концентрации н температуры может быть представлена соотношением [c.305]

    Электролитическая ионизация. Степень ионизации. Константа ионизации. Изучение разбавленных растворов показало, что все их общие свойства (понижение давления пара, изменение температур замерзания и кипения, величина осмотического давления) изменяются пропорционально числу частиц растворенного вещества . Эта формулировка представляет собой обобщенный закон разбавленных растворов Рауля — Вант-Гоффа. Эта общая закономерность оказалась справедливой для растворов органических веществ в воде и для растворов в органических растворителях. При исследовании водных растворов солей, кислот, оснований было обнаружено, что изменение соответствующего свойства в зависимости от состава раствора значительно превышает ожидаемую величину. Например, понижение температуры замерзания моляльного раствора Na l превышает почти в два раза криоскопическую постоянную для воды (3,36° вместо 1,86" ). Это свидетельствует о том, что число частиц в водных растворах кислот, оснований и солей не соответствует молярной концентрации раствора. [c.255]

    Вант-Гоффа уравнение для осмотического давления (94) имеет вид уравнения состояния идеального газа и выражает зависимость осмотического давления от концентрации растворенного вещества и температуры. Аналогия уравнений не имеет физического смысла, поскольку молекулы в жидкости ни при каких условиях не описываются уравнением состояния идеальных газов. [c.308]

    Закон Вант-Гоффа. В 1886 г. Вант-Гофф показал, что для разбавленных растворов неэлектролитов зависимость осмотического давления от температуры и концентрации выражается уравнением (закон Вант-Гоффа) [c.151]


    Свойства растворов. Осмотическое давление. Давление паров чистого растворителя и раствора. Закон Рауля. Изменение температуры кипения и замерзания растворов в зависимости от концентрации растворенного вещества. Криоскопия и эбулиоскопия. Определение молекулярного веса веществ по температурам кипения и замерзания их растворов. [c.106]

    Эту зависимость осмотического давления от температуры и концентрации раствора можно проследить по данным, приведенным в табл. 19 и 20. [c.155]

    Осмотическое давление коллоидных растворов, кроме небольшой своей величины, отличается от осмотического давления низко-молекулярных веществ непостоянством во времени и своеобразной зависимостью от температуры и концентрации раствора. Осмотическое давление Я рассчитывается согласно закону Вант-Гоффа по формуле (И) 12. Концентрация коллоидных растворов обычно очень мала. С увеличением весовой концентрации увеличивается агрегация частиц, число их в единице объема падает, а следовательно, и уменьшается осмотическое давление. Повышение температуры также способствует слипанию частиц. Поэтому применимость метода ограничивается определением размеров частиц в растворах полимеров, которые можно получить в достаточно больших концентрациях. [c.253]

    Почему поднимается жидкость в трубке и до каких пор это будет происходить Что называется осмотическим давлением Какова зависимость осмотического давления от температуры и от концентрации растворенного вещества  [c.68]

    Экспериментально а определяют, наблюдая отклонении свойств растворов электролитов от теоретических зависимостей, установленных для идеальных растворов. Законы идеальных растворов (см. гл. УП, 3) связывают их свойства — упругость насыщенного пара, температуры кипения и замерзания, осмотическое давление с концентрацией молекул растворенного вещества. При диссоциации вещества на ионы число его частиц в растворе возрастает и в уравнениях появляется изотонический коэффициент 1, учитывающий степень диссоциации. Сравнивая расчетные и наблюдаемые показатели свойств растворов, можно определить поправочный коэффициент, а по нему а. [c.156]

    Зависимость осмотического давления от объема раствора, количества растворенного вещества и температуры выражается уравнением, аналогичным уравнению Клайперона-Менделеева для газов  [c.37]

    Осмотическое давление впервые было описано в 1748 г. Нолле, который наблюдал это явление, применив прибор с полунепрони-цаемой перегородкой, разделяющей спирт и воду [23, с. 650 и сл.]. Затем наглядные опыты по осмотическому давлению в 1802 г. описал Паррот он первым и высказал идею о замечательной роли осмотических явлений в регуляции функций живых организмов [42, с. 118]. Однако. никаких закономерностей долгое время установить не удавалось. В 1887 г. Пфеффер опубликовал результаты экспериментального изучения зависимости между концентрацией раствора саха ра в воде, осмотическим давлением и температурой. Пфеффер пришел к выводу, что осмотическое давление лри данной температуре пропорционально концентрации, а следовательно, обратно пропорционально объему, при данной же концентрации — пропорционально температуре. Таким образом, Пфеффер получил формулу PV = кТ, где к -ч постоянная. Используя экспериментальные данные Пфеф-фера, Вант-Гофф установил, что к = R, газовой постоянной, что, таким образом, осмотическое давление разбавленных растворов подчиняется закону Авогадро (отсюда еще одна возможность для определения молекулярных весов). Для водных растворов электролитов формула Вант-Гоффа оказалась неточной, введение в нее поправочного коэффициента и истолкование его смысла Аррениусом привело к дальнейшему развитию учения о растворах (см. ниже). [c.132]

    Количественную сторону осмотического давления изучал голландский ученый Вант-Гофф (1852—1911). Им установлено, чтО осмотическое давление в растворах находится в зависимости от числа растворенных в нем частиц (т. е. от моляльной концентрации). Растворы, имеющие одинаковую моляльную концентрацию, должны иметь при равных температурах одинаковое осмотическое давление. Такие растворы называются изотоническими. [c.21]

    Описанный метод дает возможность измерять осмотическое давление. При некотором усложнении установки оказывается возможным производить измерения осмотического давления с высокой точностью. Соответствующие измерения, произведенные для большого числа растворов различных веществ при различных концентрациях и температурах, позволили найти зависимость осмотического давления от этих факторов. Для разбавленных растворов эта зависимость оказалась очень простой. [c.304]


    Аналогично поведению реальных газов в точке Бойля растворы полимеров в указанных условиях ведут себя, как идеальные. В частности, в 0-условиях второй вириальный коэффициент в концентрационной зависимости осмотического давления обращается в нуль, и растворы полимеров подчиняются закону Вант-Гоффа вплоть до концентраций в несколько процентов. Определение условий обращения в нуль второго вириального коэффициента уравнения осмотического давления является, таким образом, одним из способов нахождения 0-температуры. [c.32]

    Исследования влияния внешних факторов на процесс ЭОФ (давления, гидродинамической обстановки, температуры, концентрации и др.) показали, что величина К-р изменяется в зависимости от этих факторов так же, как и селективность процесса обратного осмоса, проведенного в идентичных условиях. Таким образом, условия, в которых можно осуществить процесс ЭОФ, неразрывно связаны с обратноосмотическим потоком воды через поровое пространство заряженных электрическим полем обратноосмотических полупроницаемых мембран, со строением ДЭС в поровом пространстве и поверхностных над ним слоях. Поэтому процесс избирательной проницаемости ионов и молекул через заряженные электрическим полем обратноосмотические мембраны можно проводить только при давлении, превышающем осмотическое давление раствора. [c.200]

    Уравнение Вант-Гоффа показывает, что осмотическое давление равно тому давлению, которое производило бы растворенное вещество, если бы оно в виде идеального газа занимало тот же объем, что и в растворе при той же температуре. Уравнение (126.11) правильно передает зависимость осмотического давления от концентрации и температуры. Раствор, содержащий 1 моль растворенного вещества в 22,4 л, имеет при 0°С осмотическое давление 1,013 10 Па (1 атм). Универсальная газовая постоянная R, рассчитанная из данных по осмотическому давлению раствора, совпадает с величиной, полученной при изучении газов. [c.360]

    При измерениях осмотического давления различных растворов было установлено, что величина осмотического давления зависит от концентрации раствора и от его температуры, но не зависит ни от природы растворенного вещества, ни от природы растворителя. Для растворов неэлектролитов невысоких концентраций зависимость осмотического давления от концентрации и температуры раствора выражается уравнением Вант-Гоффа  [c.226]

    Прн измерениях осмотического давления различных растворов было установлено, что величина осмотического давления зaв иt от коицентраиип раствора и от его температуры, ко не зависит пи от природы растворенного вещества, нн от прпроды растворителя. В 1886 г. Ваит-Гофф показал, что для растворсз неэлектролитов невысоких концентраций зависимость осмотического давления от кснцентрации и температуры раствора выражается уравнением  [c.226]

    К практически важным свойствам растворов, изучение которых позволяет получить информацию о некоторых физико-химических параметрах веществ, относятся осмотическое давление, понижение давления насыщенного пара растворителя над раствором, понижение температуры замерзания и повышение температуры кипения раствора по сравнению с этими параметрами для чистого растворителя. На измерении концентрационной зависимости этих свойств растворов основаны методы определения молекулярной массы веществ, степени диссоциации электролитов и др. [c.107]

    Между осмотическим давлением П, числом частиц в едииице объема п и средним радиусом коллоидных частиц г можно установить определенную зависимость. Как известно, масса диспергированного вещества в единице объема равна 4/3 лгЧп, где d — плот- ность раствора. Исходя из этого для двух дисперсных систем с одинаковой дисперсионной средой при одинаковой температуре можно записать 4/3 ri d i = 4/Злг2 с/п2 и — откуда [c.304]

    При повышении температуры на 1 °С осмотическое давление возрастает на /273 часть первоначального значения, при повышении температуры на 10°С —на /273 первоначального значения и т. д. Экстраполяцией можно найти, что при повышении температуры Т (в К) в два раза осмотическое давление л возрастает в два раза. Таким образом, выполняется зависимость  [c.109]

    Голландский физико-химик Вант-Га х э показал (1886), что для разбавленных растворов неэлектролитов зависимость осмотического давления от концентрации и температуры может быть выражена исходя из уравнения Менделеева — Клапейрона (см. 1.9) [c.202]

    Различные исследователи изучали зависимость осмотического давления от ряда факторов от концентрации раствора, температуры, характера мембран и т. д. Используя многочисленные опытные данные, голландский химик Вант-Гофф доказал (1887) приложимость к разбавленным растворам неэлектролитов законов газового состоя- [c.177]

    Вычисление характеристик разбавленных растворов неэлектролитов направлено на исследование закона Рауля (относительное понижение давления пара растворителя под раствором) зависимости повышения температуры кипения (ЛГ ип) разбавленного раствора, зависимости понижения температуры замерзания (ДТ ) разбавленного раствора от моляльной концентрации ш и связи осмотического давления (тс) с молярной концентрацией С. [c.5]

    К началу XX в. теория электролитической диссоциации достигла больших успехов. На ее основе были объяснены многочисленные и разнообразные экспериментальные данные по электропроводности растворов, осмотическому давлению, температурам замерзания и другим физико-химическим свойствам растворов. Однако ряд экспериментальных данных теория объяснить не могла. Так, константа диссоциации электролита, выражаемая уравнением типа (152.4), в широком интервале концентраций изменялась. Особенно резкая концентрационная зависимость наблюдалась у водных растворов неорганических кислот, оснований и их солей (H2SO4, НС], NaOH, K l и т. п.). Разные экспериментальные методы часто приводили к неодинаковым значениям степени диссоциации электролита в одних и тех же условиях. [c.431]

    Линейная зависимость осмотического давления от концентрации раствора и от температуры соблюдается только для идеальных растворов. Поэтому уравнение (7.4) можно применять только для разбавленных растворов. Если растворенное вещество диссоциирует и имеет степень диссоциации а (см. гл. VIH, разд. 2.1), то в простейшем случае диссоциации одной частицы на две имеем [c.179]

    Осмотическое давление зависит от концентрации раствора и температуры. Для разбавленных растворов неэлектролитов эта зависимость выражается уравнением Вант-Гоффа  [c.68]

    Осмотическое давление П прямо пропорционально молярной концентрации раствора (с) и абсолютной температуре (Т). Эта зависимость дается уравнением Вант-Гоффа П=сЯТ, где — универсальная газовая постоянная. Поскольку с=п1У, то формально уравнение Вант-Гоффа аналогично уравнению состояния идеального газа рУ=пРТ. Все растворы неэлектролитов, для которых с(Х)=1 моль/л, имеют одинаковое осмотическое давление, равное 22,69-10" Па при О °С. [c.192]

    Расчет осмотического давления Вант-Гофф предложил проводить по уравнению (0.3). Заключение о возможности использования для определения осмотического давления уравнения состояния идеального газа было им сделано после того, как полученные значения л/с для растворов сахара при 0°С оказались очень близкими к значению газовой постоянной. Экспериментальным подтверждением уравнения Вант-Гоффа служила также линейная зависимость осмотического давления растворов сахара от температуры (при с = сопз1). Однако для многих растворов уравнение Вант-Гоффа дает большое расхождение с экспериментальными данными (рис. 1-1), особенно при высоких концентрациях. [c.19]

    При этом будут рассмотрены лишь те вопросы, которые имеют отношение к теории горения. В 2 будут сформулированы общие законы термодинамики, в 3 изложены основные положения статистической механики идеальных газов. В 4 устанавливаются условия химического равновесия при фазовых переходах и химических реакциях в газах (реальных и идеальных) и в конденсированных фазах (реальных и идеальных). В этом же параграфе указаны методы расчета состава равновесных смесей. В 5 вводится понятие о теплоте реакции и описаны методы определения этой величины, а также обсуждается расчет адиабатической температуры пламени. В последнем параграфе ( 6), посвященном конденсированным системам, выводится правило фаз и обсуждаются зависимости давления пара и точки кипения от концентрации, также осмотическое давление и другие вопросы, [c.434]

    Исс 1едование зависимости осмотического давления от концентрации и температуры для разбавленных растворов неэлектролитов показало, что, несмотря на существенные различия между осмотическим и газовым давлениями, количественная сторона этих явлений характеризуется известной аналогией и к осмотическому давлению приложимы газовые законы. Наиболее полно эта количественная аналогия высказана в законе Вант-Гоффа осмотическое давление разбавленного раствора неэлектролита численно равно тому давлению, которое производило бы растворенное веш ество в состоянии идеального газа. [c.85]

    Дж. Марш разработал методику определения мышьяка. 1836—1837 Р. Дютроше доказал зависимость осмотического давления от температуры, природы растворенного вещества и типа перепонки. [c.550]

    При изучении состояния высокомолекулярных веществ в растворах используют, в частности, измерения осмотического давления ( 113). Зависимость его от концентрации при разных температурах выражают обычно уравнением с вириальными коэффициентами, подобным применяемому для выражения зависимости давления реального газа от его котщентрации (или объема) при разных температурах ( 38). При этом большей частью ограничиваются тоже лишь уравнением со вторым вириальным коэффициентом. [c.601]

    По уравнению, выражающему зависимость осмотического давления от концентрации и температуры те = MRT, находим теоретическое значение осмотического давления для 0,01М раствора тгтеор.= 2 0,082 273 = 44,8 атм. [c.44]

    Определение осмотического давления растворов в зависимости от изменения их концентраций и температуры показало, что, несмотря на существенные различия между осмотическим н газовым давлениями, к личест-венная сторона этих явлений характеризуется известной аналогией и, поэтому к осмотическому давлению приложимы все законы газового давления. [c.203]

    Электролитическая ионизация. Огеиень и константа ионизации. Изучение разбавленных растворов показало, что все их общие свойства (понижение давления пара, изменение температур замерзания и кипения, величина осмотического давления) изменяются пропорционально числу частиц растворенного вещества. Такие свойства называются коллтативными. Эта общая закономерность оказалась справедливой для растворов органических веществ в воде и для растворов в органических растворителях. При исследовании водных растворов солей, кислот, оснований было обнаружено, что изменение соответствующего свойства в зависимости от концентрации раствора значительно превышает ожидаемую величину. Например, понижение температуры замерзания моляльного раствора Na l превышает почти в два раза криоскопическую постоянную для воды (3,36° вместо [c.152]


Смотреть страницы где упоминается термин Осмотическое давление зависимость от температуры: [c.91]    [c.132]    [c.91]    [c.363]    [c.196]   
Физико-химия коллоидов (1948) -- [ c.317 ]




ПОИСК





Смотрите так же термины и статьи:

Давление зависимость от температуры

Осмотическое давление

Осмотическое от температуры

Температура зависимость от давлени

Фаг осмотический шок

зависимость от температур



© 2025 chem21.info Реклама на сайте