Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Давление тантала

    Горячую обработку давлением тантала целесообразно осуществлять в вакууме, так как на воздухе в этом случае металл окисляется на значительную глубину, что приводит к большим его потерям при последующем удалении пораженного поверхностного слоя механической обработкой. Кроме того, пластичность металла при горячей деформации на воздухе снижается. [c.335]

    Применимы хромовая сталь до 1 150°, хромоникелевая сталь, марганцовая сталь с 5% Мп также под давлением, тантал до 350° (для сухого газа, не содержащего кислорода). [c.50]


    Концентрирование кислоты осуществляется упариванием при атмосферном давлении или под вакуумом. Предпочтительнее упаривание вести под вакуумом, чтобы снизить температуру и уменьшить образование кокса. Условия осуществления процесса (высокая температура — около 200 °С и агрессивность среды) делают этот узел наиболее тяжелым в эксплуатации. Оборудование узла упарки кислоты изготовляется из монель-металла, тантала, графита, освинцованного металла. Почти все остальное оборудование может быть изготовлено из обычной стали. [c.726]

    Титан, тантал и цирконий широко применяются в производстве теплообменников. Титан применяется в испарителях азотной кислоты, конденсаторах морской воды, охладителях влажных газов в производстве хлора. Титановые трубы были использованы в нагревателях высокого давления для воды особой чистоты. Трубы из нержавеющей стали при этом выходили из строя из-за выщелачивания водой. [c.116]

    Насыщенный хемосорбент (нижняя фаза из Е-1) вначале поступает на колонну-дегазатор К-2, где выделяются физически растворенные углеводороды С4, которые возвращаются в процесс. Стабилизированный поток направляется на колонну-регенератор К-3. В нижнюю часть этой колонны подается острый дар, играющий одновременно роль теплоносителя и разбавителя. В колонне К-3 происходит гидролиз изобутилсерной кислоты и дегидратация ТМК. Из нижней части колонны выходит 45— )%-ная кислота, которая подвергается упарке под атмосферным давлением или под вакуумом в концентраторе К-4 (содержание кислоты доводится до начального— 60— 65%). Выходящие с верха колонны пары, содержащие кроме изобутилена воду, ТМК, олигомеры и унесенную кислоту, промываются горячим водным раствором щелочи в скруббере К-5 и частично конденсируются в теплообменнике Т-3, откуда конденсат поступает в отстойник Е-3. Жидкая фаза из Е-3, представляющая собой водный раствор ТМК с примесью олигомеров, направляется на колонну выделения ТМК (на схеме не показана), откуда ТМК возвращается в регенератор К-3. Пары изобутилена из емкости -5 проходят дополнительную водную отмывку в скруббере и поступают во всасывающий коллектор компрессора Н-3. Сжиженный продукт подвергается осушке и ректификации, после чего используется по назначению. На практике извлечение изобутилена проводится как в две, так и в три ступени. Вместо насосов-смесителей Н-1 и Н-2 могут применяться реакторы с мешалками, в том числе типа Вишневского, а также смесители инжекционного типа. Существенную сложность представляет узел концентрирования серной кислоты, аппаратура которого изготавливается нз тантала, графита, свинца или хастеллоя (в % (масс.) N1 — 85 Л — И Си — 4]. Остальное оборудование практически полностью изготовляется из обычной углеродистой стали. [c.299]


    Многочисленны предложения по получению мезитилена дегидроконденсацией ацетона. В качестве катализаторов этой реакции рекомендовали смесь серной и фосфорной кислот [108], соляную кислоту в присутствии апротонного растворителя, например, N-метилпирролидона [109], соли и оксиды тантала [НО] или ниобия [111] на носителях, алюмомолибденовые катализаторы, промоти-рованные палладием [112], и др. [I, с. 221]. Реакцию, как правило, проводят в газовой фазе при 200—500 °С и объемной скорости 0,3—1,0 ч , нередко при повышенном давлении. Глубина превращения ацетона за проход составляет около 50%, селективность реакции зависит от катализатора и условий процесса. Побочным продуктом процесса является оксид мезитила. Самые вы- [c.273]

    Во время второй мировой войны большие количества бутадиена для синтеза каучука получали из этилового спирта. Часть этанола каталитически дегидрировалась в ацетальдегид, а последний конденсировался в присутствии этилового спирта и окиси тантала на силикагеле в качестве катализатора с образованием бутадиена. Типичные условия проведения реакции следующие температура 325°С, молярное соотношение этанола и ацетальдегида 3 1, среднечасовая объемная скорость подачи жидкости 0,33-0,5 ч , давление атмосферное, катализатор - 2% окиси тантала на силикагеле. Хорошим катализатором является также окись циркония (2% окиси циркония на силикагеле). [c.338]

    Прямой синтез алмазов из углеродсодержащих веществ без добавки каких-либо способствующих образованию алмаза веществ (катализаторов, растворителей) протекает при очень высоких давлениях и температурах. При каталитическом синтезе удается снизить температуру и давление более чем в 2 раза (4,1 - 4,5 ГПа, 1150 - 1200 С), поэтому каталитический синтез алмазов сейчас является основным. Катализаторами являются марганец, хром, тантал, а также сплавы, образованные этими элементами с металлами, которые каталитически неактивны для данного процесса. Кроме того, катализаторами синтеза алмазов являются сплавы переходных элементов Ti, Zr, Hf, V, W, Мо, Nb с металлами Си, Ag, Au. Превращение графита в алмаз происходит при хорошем контакте между ним и жидким (расплавленным) металлом. [c.49]

    Тантал — тяжелый металл характерного синевато-серого цвета. В чистом виде он обладает хорошими механическими свойствами твердостью, ковкостью и тягучестью. По прочности танталовая жесть как прокатанная, так и отпущенная близка к прокатанной и отпущенной стали. Тантал хорошо прокатывается и обрабатывается под давлением после отжига в холодном состоянии может быть обжат на 60%. Сваривается под водой как с самим собой, так и с ЫЬ и N1. Отличается плохой теплопроводностью и электропроводностью сопротивление тантала электрическому току в 7 раз больше, чем у меди, а температурный коэффициент электрического сопротивления меньше, чем у меди. При высокой температуре в вакууме он распыляется очень мало, на чем основано его применение в лампах накаливания. В нагретом состоянии поглощает N3 и другие газы, которые пол- [c.305]

    Электронно-лучевая плавка в вакууме дает возможность очищать тугоплавкие металлы ниобий, тантал, молибден, вольфрам, рений, и др., а также кремний и другие неметаллические вещества. При этом содержание газов (Ог, Nг, Н ) в металлах уменьшается в сотни раз. Первоначально твердые и хрупкие, плохо обрабатываемые металлы (например, ниобий и тантал) становятся пластичными и легко прокатываемыми в фольгу при комнатной температуре. Для успешной очистки давление паров примеси должно не менее чем в 10 раз превышать упругость паров самого металла и быть не менее 10г мм рт. ст. Из молибдена можно удалить практически все примеси, кроме рения, тантала и вольфрама, из вольфрама — все, кроме тантала и рения. Тантал очищается при 3000° С до 0,002% примесей. [c.260]

    ПОЛУЧЕНИЕ ФАЗ ВЫСОКОГО ДАВЛЕНИЯ И ИССЛЕДОВАНИЕ ВЛИЯНИЯ ВЫСОКОГО ДАВЛЕНИЯ НА СВОЙСТВА ПЕНТАОКСИДОВ НИОБИЯ И ТАНТАЛА [c.8]

    Вьшолнен комплекс исследований по применению высоких давлений (до 8 гПа) для получения однородных ниобата магния и PMN. Показано, что обработка маловодных гидроксидов ниобия и тантала при высоких давлениях и температуре до 900°С приводит к образованию новых фаз в системах М-О (М = Nb, Та).С привлечением этих результатов предложены уточненные варианты Р-Т проекций соответствующих диаграмм состояния. [c.105]

    Чистый тантал и в этих условиях (185° С, давление 15 атм) стоек до концентрации соляной кислоты, равной 30%. [c.69]

    В машиностроении, химической и пищевой промышленности тантал целесообразно использовать в основном для изготовления теплообменной аппаратуры-—конденсаторов, ректификационных колонн и др. Устойчивость тантала позволяет изготавливать из него очень тонкостенные трубы для теплообменников, змеевиков, работающих под высоким давлением при 350°С, автоклавов и другого оборудования. [c.154]

    Литий метатанталат. В фарфоровой ступке тщательно смешивают 15,5 г карбоната лития с 95,1 г пятиокиси тантала. Приготовленную смесь в фарфоровом тигле или чашке загружают в вакуум-электрическую печь н выдерживают при 750 и остаточном давлении около 1 мм рт, ст. в течение [c.22]


    Натрий метатанталат. Тщательно смешивают 21,2 г карбоната натрия с 88,5 г пятиокиси тантала. Приготовленную шихту загружают в фарфоровый тигель и выдерживают в вакууме при температуре 800 и остаточном давлении не более 1 мм рт. ст. в течение 3—3,5 часа. Полученный спек из- мельчают. [c.22]

    Рубидий метатанталат. Смешивают 38 г карбоната рубидия с 72 г пятиокиси тантала. Шихту загружают в фарфоровый тигель, помещают в печь и выдерживают при температуре 750° в вакууме (остаточное давление не более I мм рт, ст.) в течение 2,5—3 часов. Спек измельчают. [c.22]

    Подробный обзор о лабораторной перегонке иод вакуумом металлов и сплавов, не содержащих железа, приведен в работе Шпендлеве [116]. Хорслей [117] описал аппаратуру для разгонки щелочных металлов. В соответствии с этими работами металл расплавляют в вакууме, фильтруют и затем перегоняют преимущественно ири давлении до 10" мм рт. ст. Пары металла конденсируют в конденсаторе, охлаждаемом циркулирующим маслом. Для получения чистого тантала Паркер и Вильсон [118] использовали хлорид тантала ТаС ., (температура кипения 240° С при 760 мм рт. ст.). Безобразов с сотр. [118а] разработал кварцевый аппарат диаметром 40 мм и высотой разделяющей части 1250 мм для аналитической перегонки высококипящих веществ с температурой кипения до 1000°С (сера, селен, теллур, цинк, кадмий, сульфид мышьяка и др.). [c.260]

    Дивинил из ацетальдегида и этанола получается в присутствии окиси тантала, нанесенной на силикагель (2% ХэзОа), при 325—350 °С и атмосферном давлении. Согласно наиболее вероятному механизму образование дивинила протекает через промежуточную стадию получения кротонового альдегида  [c.364]

    Двухстадийный американский процесс состоит в том, что смесь 69 вес. % этилового спирта, 24% ацетальдегида и 7% воды (полученной неполным дегидрированием этанола над обычным медным катализатором) пропускают над силикатанталовым катализатором (2% окиси тантала и 98% силикагеля) при 325—350°, атмосферном давлении и объемной скорости 0,4—0,6 A 4a . Катализатор нужно было регенерировать каждые 4—5 суток [29]. [c.218]

    Карбонилы ниобия и тантала неизвестны. Однако взаимодействием Nb U или Ta ls с избытком металлического натрия при 100 °С под большим давлением СО и в присутствии дйглима (диметилового эфира диэтилен гликоля) были получены желтые соли типа [Ыа(диглим)г][Э(СО)б], где Э — Nb или Та. Они плавятся около 175 °С, а на воздухе (и на свету) медленно разлагаются. Известны и некоторые более сложные карбонильные производные обоих элементов. [c.517]

    При экстракционном разделении соединений ниобия и тантала применяют смесь циклогексанона СбНюО и 2-ксилола gHio. При 40° С давление пара СбНюО составляет 11 мм рт. ст., 2-ксилола—18 мм рт. ст. Каково приближенное значение давления пара раствора, содержащего по массе 60% СеНюО и 40% sHio  [c.133]

    При электронно-лучевой плавке вещество помещают в специальное устройство, снабженное мощным источником излучения электронов. Устройство работает как рентгенова трубка, но прн более низком ускоряющем напряжении. Очищаемый образец—анод. Вольфрамовый или танталовый проводник служит в качестве нити накала катода. Очищаемый материал плавится под действием электронного излучения при непрерывной откачке, которая должна создавать давление не выше 0,01 Па. Электронно-лучевая плавка в вакууме дает возможность очищать тугоплавкие металлы ниобий, тантал, молибден, вольфрам, рений и др., а также кремний и другие неметаллические вещества. При этом содержание газов (О2, N2, Но) в металлах уменьшается в сотни раз. Перво- [c.321]

    Целью данной работы является отработка методов синтеза аморфных пентаок-ендов ниобия и тантала и исследование особенностей их кристаллизации в широком диапазоне давлений и температур. [c.8]

    В работе [52] исследовали кинетику растворения ниобиевых сплавов путем периодического, через каждые 24 ч, взвешивания (до 72—144 ч) при испытаниях в закрытых контейнерах при давлении 15 атм, а также при 185° С (только 24 ч). В качестве агрессивных сред использовали кипящие серную, соляную и фосфорную кислоты. Испытания в азотной кислоте не проводили, так как согласно литературным данным в азотной кислоте ниобий абсолютно стоек при любых температурах и концентрациях. На рис. 64 показана стойкость ниобиевых сплавов в кипящей серной кислоте различной концентрации. Расположение кривых позволяет оценить влияние легирования на коррозионную стойкость ниобия в этой среде. Очевидно, что все исследованные элементы (Ti, V, Zr, Mo), кроме Та, оказывают неблагоприятное влияние на стойкость ниобия. Стойкость ниобия в кипящей соляной кислоте может быть оценена по предельной концентрации этой кислоты, которая, как установлено, равна 16%. Тантал, как бьшо показано (см. рис. 45), абсолютно стоек в кипящей соляной кислоте до концентрации 30%. Взвешивание с точностью до 10 г практически не фиксирует уменьшения массы сплава МЬ + 15ат. %Тав кипящей 20%-ной НС1. [c.68]

    Осажденные твердые катализаторы для приготовления высокомолекулярных полиэтиленов при низком давлении можно готовить взаимодействием солей титана, циркония, гафния, тория, урана, ванадия, ниобия, тантала, хрома, молибдена и вольфрама с триалкилалюминием [101]. Вместо триалкилалюми-ния можно применять галогениды алюминия [102] и алкильные производные магния и цинка [103]. Возможно также использовать алкильные производные металлов группы I, например натрия или лития [52, 75]. Аналогичные -катализаторы могут использоваться и для полимеризации высших олефинов [1, 59]. [c.288]

    Немаловажную роль в технологии производства играют вопросы коррозии. Известно, что металлы в ряде процессов служат катализаторами различных реакций. Поэтому содержание их в реакционной массе может способствовать течению побочных реакций, увеличивать цветность ее и снижать качество целевого полупродукта. Содержание металлов в готовой продукции может обусловить нестабильность ее при хранении. Поэтому для процессов, осуществляемых при участии агрессивных реагентов (кислот, щелочей, галогенов) необходимо обосновывать род конструктивных материалов аппаратуры. Для большинства процессов, применяемых в производстве витаминов, пригодны аппараты, изготовленные либо из эмалированной стали, либо из нержавеющей стали марки 1Х18Н9Т. Однако наряду с этим в синтезе витаминов имеются процессы, для которых указанные материалы непригодны, например, процессы окисления хинолина или 2-метил-5-этил-пиридина азотной кислотой под давлением при температуре выше 170° С. Для этих условий реакции необходимы реакторы из тантала. При сниже- [c.9]

    НСО)2СН , а также анионов галогенов (наиб, важны рьции с Р ). При этом замещаемой группой могут служить атомы галогенов, нитро-, амино-, гидрокси-, алкокси-, алкилтио- и сульфогруппы, реже-атомы водорода. Такие р-ции часто реализуются в жестких условиях, напр, щелочное плавление солей сульфокислот проводят при т-рах порядка 300-400 "С (в расплаве щелочи при атм. давлении или в водном р-ре щелочи при повыш. давлении) АгЗОзКа + 2Ь аОН AЮNa -Н КзгЗОз -I- Н О. Р-ции облегчаются в присут. соединений Си и особенно при наличии в орто- или паря-положении к уходящей группе ориен-тантов П рода. [c.199]

    ТАНТАЛА СПЛАВЫ. Обладают достаточно высокой мех. прочностью и жаропрочностью до 1500-1650 С, низким коэф. термич. расширения, стойки в р-рах мн. к-т, расплавах щелочных и др. легкоплавких металлов, хорошо свариваются аргонодуговой и электроннолучевой сваркой тугоплавки (т. пл. 3000°С) по сравнению со сплавами др. тугоплавких металлов пластичны и вязки. Осн. легирующие элементы-тугоплавкие переходные металлы (КЬ, 2г, Щ V, Мо), содержание к-рых колеблется от 2 до 35% по массе. По структуре Т. с.-твердые р-ры с объемноцентрир, кубич. решеткой. Содержание неметаллич. примесей (С, О, Н) обычно не превышает 0,003-0,03% по массе. Увеличение содержания примесей ухудшает технологические свойства (деформируемость при обработке давлением, пластичность сварных соединений) вследствие образования твердых растворов внедрения и различных фаз (карбидов, оксидов и др.). [c.496]

    Калий мегатантилат. Смешивают 26,2 г карбоната калия с 83,7 г пятиокиси тантала. Смесь в фарфоровом тигле помещают в вакуумную печь н выдерживают при и остаточном давлении около 1 мм рт. ст. в течение 3—3,5 часа. Спек измельчают. [c.22]

    Цезий метатанталат. Смешивают 48 г карбоната цезия и 62 е пятиокиси тантала. Смесь загружают в фарфоровый тигель, помещают в вакуумную печь и выдерживают в течение 3 часов при 700° и остаточном давлении около 1 мм рт. ст. Образовавип йся спек измельчают, получая 100 г продукта, что составляет 98% от теоретического выхода соотношение s20 Ta20s = 1,00 0,02, [c.23]


Библиография для Давление тантала: [c.9]   
Смотреть страницы где упоминается термин Давление тантала: [c.256]    [c.291]    [c.515]    [c.354]    [c.339]    [c.383]    [c.87]    [c.175]    [c.135]    [c.383]    [c.218]    [c.322]    [c.9]    [c.8]    [c.117]    [c.192]    [c.199]    [c.203]   
Неорганические хлориды (1980) -- [ c.335 ]




ПОИСК





Смотрите так же термины и статьи:

Зависимость давления паров пентахлоридов ниобия и тантала над плавами от температуры

Тантал

Тантал давление пара

Тантал давление паров



© 2025 chem21.info Реклама на сайте