Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Восстановление с образованием комплексов

    Если в изученном интервале концентраций можно пренебречь образованием комплекса одной иэ форм редокс системы (обычно восстановленной), зависимость потенциала от концентрации свободного лиганда аналогична случаю функционирования металлического электрода, обратимого к единственной форме . [c.119]

    В решетке элементного бора связи между атомами неполярные, ковалентные, что обусловливает такие его свойства, как большая твердость и химическая устойчивость к процессам окисления — восстановления, растворения и образования комплексов. В образовании сильных ковалентных связей участвуют делокализованные электроны, о чем свидетельствуют цвет и наличие небольшой электропроводности. [c.571]


    В месте соприкосновения двух жидкостей образуется бурое кольцо комплексного соединения [Fe(NO)lSO . Составить уравнение реакции в две стадии восстановления HNO, до N0 и образования комплекса. Эта реакция применяется для открытия HNO, в отсутствие HNO,. [c.265]

    Синтез комплекса толуола является дальнейшим доказательством его строения. 1-Метил циклогексадиен-1,4 (И), полученный по методу Вибо (1950) восстановлением толуола натрием и спиртом в жидком аммиаке и очищенный через тетрабромид (т. пл. 171 °С), при обработке N-бромсукцинимидом образует монобромид III. При постепенном добавлении к бромиду тетрафторбората серебра при —60 °С растворение реагента в органическом слое сопровождается немедленным осаждением бромистого серебра и образованием комплекса IV (т. пл. —64 °С)  [c.137]

    ЧТО Приведет к образованию комплекса N2 с Мо(У1). Присоединение двух протонов [уравнение (14-9), стадия б] дает молекулу диимида, которая остается связанной с железом, пока молибден не пройдет второй тур восстановления. Далее диимид восстанавливается в гидразин и в конечном итоге в аммиак  [c.87]

    Если антиген или антитело в качестве метки содержат электроактивную группу, то образование комплексов АГ-АТ, как правило, приводит к изменению скорости электрохимической реакции. Так, в присутствии антител ток окисления морфина, меченного ферроценом, уменьшается, а волна восстановления ацетата ртути, связанного с эстриолом, смещается к более отрицательным потенциалам. В качестве метки могут служить и ионы металлов, образующие комплексные соединения с хелатообразующими реагентами, пришитыми к белкам. В результате взаимодействия антител с мечеными антигенами ионы металлов высвобождаются и могут быть определены методом инверсионной вольтамперометрии. Одновременно можно определять несколько компонентов, используя в качестве метки различные ионы. [c.507]

    ML 3. При взаимодействии с железом(П1) все шесть протонов вытесняются одновременно с образованием комплекса ML -при значениях pH гораздо более низких, чем в случае других катионов, что указывает на высокую устойчивость образующегося комплекса. Полярографическим методом с использованием данных по восстановлению РеЗ+ до Fe + из комплекса FeL , находящегося в равновесии с более слабым оксалатным комплексом, рассчитана константа устойчивости, равная 2,3-Ю [538]. [c.289]

    Для десорбции Ри(1 / ) с анионита применяют два метода. Наиболее распространенный из них заключается в смеш,ении равновесия образования комплекса посредством уменьшения концентрации нитрат-ионов в десорбирующем растворе. Элюирование при 60—70° С благоприятнее по сравнению с вымыванием при комнатной температуре вследствие более высокой скорости десорбции и увеличения степени концентрирования плутония. Второй метод состоит в восстановлении Ри(1У) до трехвалентного состояния при помощи гидроксиламина. Этот метод используется реже вследствие выделения газов во время восстановления и вспучивания зерен ионита в колонке, а также из-за опасности разрушения ионита под действием восстановителя [626]. [c.358]


    Соли Ре + во мнбгом похожи на соли Mg +, что обусловлено близостью радиусов ионов (у Nig + г, = 66 пм, у Ре + п — 74 пм] , Это сходство относится к свойствам, определяемым, в основном, межионными и ион-дипольными взаимодействиями (кристаллическая структура, энергия решетки, энтропия, растворимость в воде, состав и структура кристаллогидратов, способность к комплексообразованию с лигандами, обладающими слабым полем). Наоборот, не проявляется аналогия в свойствах, связанных с электронными взаимодействиями (способность к реакциям окисления-восстановления, образование комплексов со значительной долей "ковалентной связи). На рис. 3.127 сопоставлены энтропии кристаллических соединений Ре + и М +. При сравнении рис. 3.127 и 3.125 прослеживается степень сходства и различия двухвалентных состояний элементов семейства железа между собой и между Ре и Мд, принадлежащим к разным группам периодической системы элементов. [c.562]

    Реакции комплексообразования широко применяются в вольтамперометрическом анализе для смещения волн (или пиков) ионов металлов в нужн)то область потенциалов. В случае процессов восстановления образование комплексов, как правило, приводит к смещению Еу2 обратимой диффузионной волны в катодную область. [c.455]

    Тем не менее имеется ряд патентов на методы сульфидирования катализаторов гидрообессер гваиия, отличающиеся условиями обработки и сульфидирующим агентом. Большая роль отводится сероуглероду [пат. США 3516926], предлагаются меркаптаны (С1—С20) [пат. США 4111796], диметилсульфид [пат.Англин 1553616], растворенные в нефтепродукте, сероводород и низкомолекулярные сульфиды в смеси с водородом [ пат. Японии 53-122692, США 3166491], сероводород, растворенный в нефтепродукте [пат. США 4213850] и пр. Разновидностью сульфидирования сероводородом в смеси с водородом является прием загрузки элементарной серы непосредственно в реактор, на слой катализатора и обработки ее ВСГ при постепенно повышаемой температуре до 200 °С [ 80, пат. США 4177136]. В связи с многообразием методов сульфидирования сформулировать требования по выбору условий обработки однозначно весьма трудно. Особенно разноречивые мнения по влиянию предварительного восстановления катализатора водородом на последующее сульфидирование. Однако в последних публикациях утверждается, что глубокое восстановление водородом, например, при высоких температурах (400 °С и выше) отрицательно влияет на образование комплексов, определяющих активность катализатора [39, 72, 81], но необходимость водорода при активации обязательна [80]. На основе исследований с учетом возможности реализации технологии активации катализатора ряд известных вариантов сульфидирования катализатора можно, в порядке предпочтительности, расположить следующим образом а) смесью сероводорода с водородом б) низкомолекулярным серусодержащим соединением в среде водорода в) низкомолекулярным серусодсржащим соединением в потоке легкого [c.99]

    X P jr- Андерсон [2] констатирует, что этот график ... демонстрирует полную пригодность уравнения скорости, особенно если учесть до-нольно большие экспериментальные погрешности. Кромо того, ураинение удсзвлетворительно предсказывает измененне скорости при измепении об-щс го давления и состава газа. . . Может быть полезно рассмотреть посту-лачы, на основе которых могло быть выве.дено уравнение ск(- рости. Эти постулаты таковы во-первых, скорость реакции пропорциональна парциальному давлению водорода и доле восстановленного железа в реакционной зоне и, во-вторых, доля восстановленного железа определяется парциальными давлениями водяного пара и окиси углерода . Эти постулаты представляются логичными, если принять, что лимитируюш ей стадией реакции является образование комплекса , состоящего из хемосорбированных окиси углерода и водорода, который может реагировать с соседним аналогичным комплексом или с хемосорбированной молекулой спирта или олефииа. Этот комплекс может иметь природу гидро-карбонила железа, и его образованию может предшествовать образование карбонила железа на поверхности катализатора. [c.522]

    Примеси металлов в катализаторе ускоряют окисление кокса, воздействуя преимущественно на стадию образования комплекса СхОу [ 01]. Металлы, способные быть переносчиками кислорода, ускоряют окисление кокса путем попеременного окисления иона Х кислородом до промежуточного иона (Х0. ) и восстановления его углеродом по схеме [108]  [c.150]

    В соответствии с уравнением Нернста дпя окислительно-восстановленных систем происходит уменьшение вепичинь потенциала, если окисленная форма образует более устойчивый комплекс, чем восстановленная, и, наоборот, увеличение при образовании более устойчивого комплекса восстановленной формы. Изменение величины потенциала, естественно,позволяет определить концентрацию потенциалопределяющих ионов и тем самым константы образования комплексов. [c.117]

    В соответствии с этой схемой на капельном ртутном или на вращающемся дисковом электроде в щелочных растворах наблюдаются две одноэлектронные волны, причем первая из них отвечает обратимому восстановлению кетонов с образованием анион-радикалов, а вторая — необратимому присоединению электрона к анион-радикалу. Такие волны видны, например, на поляризационной кривой электровосстановления бензофенона (рис. 203). При фиксированном потенциале диска на кольцевом электроде наблюдается ток окисления анион-радикалов, причем максимальный выход анион-радикалов соответствует области потенциалов предельного тока диффузии первой волны. Было показано, что ток на кольце не протекает при отсутствии катодного тока на диске и что он не может быть вызван окислением каких-либо других компонентов раствора, кроме анион-ра-дикалов. Образование анион-радика-лов было зафиксировано при помощи дискового электрода с кольцом также, когда на дисковом электроде наблюдается только одна многоэлектронная волна восстановления органического вещества. Анион-радикалы бензальдегида, ацетофенона, бензоилферроцена и ферроценилаль-дегида были зафиксированы в водных средах, что не удавалось сделать при пЪмощи метода ЭПР из-за короткого времени жизни анион-радикалов. Наряду с этим методом вращающегося дискового электрода с кольцом удалось обнаружить образование комплексов с переносом заряда между анион-радикалом и исходной молекулой карбонильного соединения. [c.401]


    Для прим ра можно привести систему Си2+- Си+ Си. Двухвалентная медь восстанавливается до одновалентной при потанциале, равном +0,17 в. Так как этот потенциал значительно отрицательнее потенциала, восстановления Си+->-Си (+,0,5 1 1в), то ионы одновалентной меди практически не могут существовать возле электрода в заметной концентрации. Однако если В(Веоти в раствор сульфата меди вещество, повышающее устойчивость ионов одновалентной меди вследствие образования с ними комплексного соединения (аммиак или ионы хлора), то потенциал восстановления такого комплекса станет более отрицательным и на поляризационной кривой получатся две волны. [c.373]

    Полученное уравнение — основное для окислительного потенциала систем, в которых наряду с переносом электронов протекают другие процессы, приводящие к образованию комплексных соединений. Оно выражает зависимость окислительного потенциала от состава раствора. В общем случае число переменных складывается из Шо концентраций комплексов окисленной формы, Шг концентраций восстановленной формы, включая концентрации аквакомплексов обеих форм, концентрации (активности) лиганда А , иона Н+, активности воды и исходных концентраций окисленной и восстановленной форм, равных их общей концентрации Со и Сг. Число этих переменных равно Шо + Шг + 5. Число независимых переменных меньше общего числа концентрационных переменных на число уравнений связи [(то + тг)-уравнений образования комплексов)] и равно 5. Поэтому окислительный потенциал является функцией 5 переменных, а именно Со, Сг, Н, [А] и анао- Активность воды в разбавленных растворах близка к 1 и, следовательно, число переменных уменьшается до 4. При изучении комплексообразования в смешанных растворителях и концентрированных водных растворах активность воды может заметно меняться. Тогда ее следует ввести в уравнение (Х.84). [c.623]

    По Шрайеру механизм снижения наводороживания в процессе кадмирования объясняется образованием промежуточного слоя окиси титана, который препятствует наводороживанию стали. Для формирования такого слоя необходимо мгновенное увеличение плотности тока до 100 мА/см , что одновременно облегчает восстановление перекисного комплекса титана, снижает скорость выделения водорода и препятствует проникновению его в сталь. [c.66]

    Магний—довольно электроотрицательный металл (5 g2+/Mg= = —2,1 В) —корродирует в свободном от кислорода нейтральном растворе хлористого натрия с выделением водорода. Железо в таких же условиях остается нетронутым. В то же время при многих коррозионных процессах в растворах, содержащих кислород, реакции с выделением водорода и восстановлением кислорода протекают одновременно. Относительную роль кислорода, гидратированного протона и молекулы воды в процессе коррозии установить сложно, поскольку она зависит от таких факторов, как природа металла, раствора, значения pH, концентрации растворенного кислорода, температуры, возможности образования комплексов и др. Скорость реакции с восстановлением водорода обычно контролируется активацией и в существенной степени зависит от природы электрода, хотя pH раствора, температура и пр. также оказывают определенное влияние. Поэтому в данном случае зависимость между перенапряжением и плотностью тока отвечает уравнению Тафеля (1.19), причем на значениях а и Ь сказываются природа металла и состав раствора. При высоких плотностях тока перенос зарядов становится существенным и линейное соотнощение между Т1 и logi нарушается. При восстановлении кислорода контроль активацией существен при низких плотностях тока, но при повышении плотности тока большее значение приобретает диффузия, и скорость коррозии тогда соответствует предельной плотности тока. Отметим, что в отличие от перенапряжения активации перенапряжение концентрации не зависит от природы электрода, хотя пленки и продукты коррозии, которые задерживают передачу электронов на катодных участках, будут заметно влиять на ее скорость. [c.29]

    Рассматриваемые комплексные соединения могут подвергаться как окислению, так и восстановлению Насыщенные лиганды способствуют стабилизации высоких степеней окисления координированного иона металла, поэтому процессы окисления макроциклических комплексов изучены значительно лучше Даже в процессе синтеза комплекса из свободного лиганда в случае ионов серебра могут наблюдаться диспропорционирование и образование комплекса серебра (П) В более жестких условиях комплекс серебра (И) может быть окислен NO IO4 до комплекса серебра (П1) [148] [c.47]

    В ряде сообш ений [324, 566, 964] указывается, что в роданидном комплексе рений находится в четырехвалентном состоянии, причем условия восстановления Re(VII) и получения роданидного комплекса различные облучение УФ-светом в присутствии винной кислоты в среде 1—10 N H2SO4 [566], 1 N НС1 и 100-кратный избыток Sn(II) [964]. В работе [324] установлено образование комплекса рения(1У) с роданидом состава 1 1 и константой нестойкости [c.92]


Смотреть страницы где упоминается термин Восстановление с образованием комплексов: [c.536]    [c.289]    [c.536]    [c.240]    [c.86]    [c.328]    [c.241]    [c.21]    [c.81]    [c.89]    [c.62]    [c.247]    [c.722]    [c.154]    [c.205]    [c.584]    [c.324]    [c.62]    [c.226]    [c.383]    [c.48]    [c.69]    [c.84]    [c.15]    [c.441]    [c.148]    [c.40]    [c.48]    [c.207]   
Методы аналитической химии Часть 2 (0) -- [ c.227 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексы восстановление

Комплексы образование



© 2025 chem21.info Реклама на сайте