Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Горные кобальта

    Позже, уже в начале нашего века, Кларк со своим сотрудником Вашингтоном изучили содержание в различных минералах и горных породах ряда менее часто встречающихся элементов — хрома, ванадия, никеля и др. Оказалось, что соотношение количеств некоторых элементов в минералах часто бывает строго постоянным. Например, количество кобальта бывает всегда в 10 раз меньше, чем никеля. В сульфидах различных металлов содержание селена и теллура обычно в 10—100 раз меньше, чем серы. [c.239]


    Чрезвычайно распыленный по горным породам марганец вымывается водой и сотнями тысяч тонн ежегодно выносится реками в океан. Между тем- содержание Мп в мор й)й воде очень мало (10" —10 %), тогда как ил глубоких мест океана содержит его значительно больше (до 0,3%). Обусловлено это постоянно протекающим окислением (за счет растворенного в воде кислорода) растворимых производных двухвалентного марганца до практически нерастворимого гидрата двуокиси (МпОг л НгО), который и осаждается на дно. В отдельных местах океанского дна обнаружены камнеподобные образования ( конкреции ), содержащие иногда до 45% марганца (а также примеси кобальта, никеля и меди). Возможно, что богатые месторождения подобных конкреций станут объектом промышленной эксплуатации. Ежегодная мировая добыча марганцовых руд исчисляется миллионами тонн. [c.300]

    Победит — сплав углерода, вольфрама и кобальта. По твердости он бли-.зок к алма.зу, применяется в металлообработке и при бурении горных пород. [c.156]

    Атомно-абсорбционный метод определения содержания кобальта применяют при анализе горных пород, минералов, сплавов и чистых металлов. Оптимальной является, линия 240,7 нм, по которой возможно определение >0,13 мкг/мл. Лампы повышенной яркости позволяют обнаружить 0,01 мкг/мл. В воздушно-ацетиленовом пламени определению содержания кобальта никель, хром, медь и другие элементы практически не мешают. [c.73]

    Роданиды применялись для обнаружения кобальта в солях никеля [302], в сталях электрографическим методом с использованием реактивной бумаги, пропитанной растворами роданида аммония, ацетата аммония и винной кислоты [875], в минералах и горных породах [194, 239] и др. [c.48]

    В настоящее вре.мя разработаны. методы определения небольших количеств кобальта путем облучения анализируемых образцов нейтрона.ми в ядерных реакторах [1095] в горных породах, морских отложениях и метеоритах [1335, 1336, 1341], в металлической сурьме [188], в электролитном цинке высокой чистоты [873], в алюминиевых сплавах [510], в железе [388], в кремнии высокой чистоты [869], в сталях [380, 1093], в биологических тканях [893, 1177] и других материалах [798, 1444]. [c.173]

    Малые количества кобальта в горных породах можно также определять фотометрически 1-нитрозо-2-нафтолом [793], нитро-so-R-солью или полярографически после обогащения осаждением кобальта (также никеля и. меди) рубеановодородной кислотой [202]. [c.184]

    Второй том сборника Неорганические синтезы по своему построению не отличается от ранее вышедшего в свет перевода первого тома. Так же как и в первом томе, составители приводят в библиографии ссылки на работы преимуш ественно американских исследователей, игнорируя работы советских исследователей, что уже отмечалось редактором советского издания в предисловии к первому тому. Во второй том включено большое количество новых проверенных синтезов. Значительное место уделено описанию извлечения редкоземельных элементов из горных Пород, их разделения в смесях и дробной кристаллизации. Приведен ряд новых синтезов соединений галлия, европия, германия, титана, циркония, тория, хрома и калия описано также получение карбонилов никеля, кобальта и железа и комплексных соединений с органическими аддендами. Всего во втором томе помеш ена восемьдесят одна методика. Предметный указатель к первому и второму томам будет дан в третьем томе, перевод которого будет издан в ближайшее время. [c.6]


    Кобальт менее распространен в природе, чем никель, с которым он главным образом связан. Эти элементы встречаются в перидотитах (в оливине), в сульфидах, например в пирите и пирротине, в арсенидах, в роговой обманке и биотите. Кобальт находится в железных рудах и часто присутствует в марганцевых рудах, что очень важно для аналитика ввиду вредного влияния его при определении марганца висмутатным методом. При анализе горных пород и металлургических продуктов определение кобальта по сравнению с определением никеля требуется значительно реже. [c.469]

    При анализе горных пород, минералов и руд можно удовлетворительно отделить кобальт от железа, титана, циркония и гафния осажде- [c.470]

    Часто ставится вопрос сколько времени требуется для проведения полного анализа породы . Это зависит, конечно, от минералогической сложности анализируемой породы и от того, как работает выполняющий анализ аналитик. Если в лаборатории имеется препаратор, который проводит измельчение, и если не требуется определения плотности, то после долгой практики можно научиться так экономить каждую минуту рабочего дня, чтобы при обилии платиновой посуды и возможности непрерывного пользования, днем ]i ночью, воздушными и водяными или паровыми банями и при условии отсутствия случайных задержек, — через каждые три дня после выполнения первого анализа заканчивать по одному анализу из серии образцов горных пород сходного характера, содержащих каждый от 18 до 20 определяемых количественно компонентов. В число последних не входят фтор, углерод, азот, металлы сероводородной группы п кобальт. [c.888]

    I действии щелочи — ультрамарин, горная синяя, гидроокись меди, м кобальтовая синяя или кремнекислые соли калия и кобальта. [c.345]

    Выполнение анализа. Несколько миллиграммов пробы помещают на предметное стекло, прибавляют 1—2 капли раствора соляной кислоты и слегка нагревают на микрогорелке. Краска растворяется с выделением угольного ангидрида (вспенивание) — горная зелень краска растворяется с выделением уксусной кислоты (вспенивание, запах) — ацето-арсенит меди краска растворяется без выделения газа — гидроокись меди, мышьяковистая медь и цинкат кобальта краска частично растворяется — зеленая земля или смешанная хромовая зеленая краска почти нерастворима в соляной кислоте (видимое растворение отсутствует, но жидкость слегка окрашивается) — хромовая зеленая. [c.347]

    ПОБЕДИТ — металлокерамический сплав на основе карбида вольфрама W (около 90%) и кобальта (около 10%) обладает большой 7вердостью. Применяют для изготовления режущего инструмента и других деталей в металлообрабатывающей промышленности, волочильных фильер, инструмента для горных работ и др. П. был первым сплавом такого типа из изготовленных в СССР (1929 г.). П. называют и другие твердые сплавы. [c.194]

    Метод растирания порошков. Идентификацию веществ сухим путем можно проводить и при обыкновенной температуре. Этот метод называют методом растирания порошков. Сухую пробу растирают с сухим реактивом. Метод был предложен в 1898 г. Ф. М. Флавицким, в некоторых случаях его применяют и в настоящее время, особенно часто его используют геологи с полевых условиях. Так, при растирании с диметилглиоксимом минерала, содержащего олово, образуется соединение фиолетового цвета. По видимому, в этом случае образуется разноме-талльный комплекс олова, диметилглиоксима и железа, которое обычно также содержится в минералах и горных породах. Если растирать сульфат кобальта с роданидом аммония, образуется тетрароданидный комплекс кобальта, окрашенный в синий цвет  [c.538]

    Горные зоны. В почвах этих зон концентрация и соотношение элементов, присутствуюших в малых количествах, меняются в широких пределах, а также встречаются самые различные реакции живых организмов. Но все же довольно часто выявляется недостаток иода, кобальта, меди, цинка, а в ряде регионов проявляется избыток этих же и других элементов. [c.269]

    Следы кобальта (а также меди, никеля, цинка и кадмия) определяют в горных породах полярографическим методом [1339] после отделения меди, никеля, кобальта, цинка и кадмия от мешающих элементов в виде рубеанатов, последующего осаждения нитрозонафтолата кобальта. [c.182]

    Ранее основным производителем кобальтового порошка являлась фирма Металлурги Хобокен Оверпелт , Бельгия. Небольшие количества производились также во Франции и ФРГ. Некоторые фирмы используют процесс, разработанный и запатентованный Горным министерством США, который позволяет извлекать кобальтсодержащие связующее вещество из лома цементированных карбидов. В этом процессе для растворения кобальта используют расплавленный цинк, который затем выделяется путем дистилляции, а тугоплавкий кобальт и карбиды остаются в виде массы, которая может быть направлена в рецикл. Одна из фирм использовала этот процесс для переработки 340 кг лома в день в специально сконструированной печи [16]. [c.100]


    Силикатные горные породы Nb Nb II 295,088 0,003-0,1 20 Смесь порощков кварца и гранита 3 1с добавками окислов ниобия и тантала (НЬгОз, ТагОз) 50 мг пробы смешивают с 50 мг буферного порошка последний состоит из смеси безводного хлорида кобальта, угольного порошка и кварца (5 2 1) Угольная дуга переменного тока (220 В, 25 А). Испарение из канала электрода. Спектрограф ДФС-13 с дисперсией 2 А/мм [c.715]

    Определение кобальта в горных породах [269]. Для определения рекомендовано использовать МААК. [c.143]

    Экстракция с помощью дитизона применена для фотометрического определения меди в титане и титановых сплавах [257] меди и кобальта после их хроматографического разделения на силикагеле [258] меди, свинца и цинка в природных водах ивы-тяжках из почв [259] цинка и меди в биологических материалах [260] цинка в металлическом кадмии [261] и баббитах [262]. Экстракционное выделение дитизоната цинка использовано для последующего фотометрического определения цинка с помощью ципкона. МетЬд применен для определения цинка в чугуне [263]. Экстракционно-фотометрические методики определения кадмия с помощью дитизона предложены для определения кадмия в алюминии [264], нитрате уранила [2651 и металлическом бериллии [266]. Дитизонат таллия экстрагируют хлороформом. Содержание таллия определяют фотометрированием экстракта [267]. Аналогичным способом определяют таллий в биологических материалах [268]. Индий в виде дитизоната полностью экстрагируется хлороформом при pH 5 [269]. Экстракция комплекса индия с дитизоном применена для фотометрического определения индия в металлическом уране, тории, а также в их солях [270]. Свинец определяют в алюминиевой бронзе [271], теллуровой кислоте [272] и горных породах [273, 274] свинец и висмут — в меди и латуни [275], ртуть —в селене [276] серебро — в почвах, (методом шкалы) [277] ртуть — в рассолах и щелоках (колориметрическим титрованием) [278]. [c.248]

    Устранение влияния мешающего иона регулированием концентрации реактива или регулированием pH возможно лишь прн условии, что образуемый им с реактивом комплекс менее прочен по сравнению с комплексом определяемого элемента. При этом мешающий ион не удаляется из раствора в виде осадка, экстракта и г. п. Мешающий ион связывается в бесцветное комллексное соади-нение. Таким образам, мешающий ион маскируется , он не образует окрашенного комплекса с тем реактивом, который взят для переведения определяемого иона в окрашенный комплекс. Подобные методы применяются для устранения влияния железа, которое постоянно встречается в горных породах, шлаках и металлических сплавах. Железо (П1) реагирует с многочисленными реактивами, применяющимися для определения других металлов. Для маскирования железа предложено много комплексообразователей, среди них фторид, фосфорная кислота, пирофосфат и др. Все эти <тас-кирующие реактивы в определенных условиях позволяют легко устранить влияние железа при определении кобальта в виде рода-иида фосфорная кислота дает возможность устранить наложение желтой окраски хлоридных комплексов железа при определении титана в виде перекисного комплекса и др. В ряде случаев применяется другой вариант метода маскирован-ия — восстановления железа до двухвалентного. [c.147]

    Общие замечания. Метод осаждения в виде основных ацетатов раньше очень широко применялся при анализе горных пород, но в настоящее время он в значительной степени вытеснен методом осаждения аммиаком, условия проведения кбторого теперь известны лучше (см. Алюминий , стр. 565). Этот старинный стандартный метод, который и в настоящее время может оказаться полезным, не следовало бы предавать забвению. В настоящее время его применяют главным образом для 1) отделения железа (И1) от кобальта, меди и цинка 2) отделения железа (III) от никеля, когда оба элемента присутствуют в больших количествах, и 3) от деления больших количеств железа (III) от марганца. Положительной [c.103]

    Затем раствбр разбавляют кипящей водой приблизительно до 400 мл и нагревают др кипения. При правильно проведенной нейтрализации осаждение не должно начаться прежде, чем температура достигнет 70° С. Когда будет достигнута температура кипения, постепенно прибавляют раствор 3 г ацетата натрия в 10—25 мл воды и продолжают кипячение 3 мин. Фильтруют, как только осадок соберется на дне. При этом вначале лучше обходиться без отсасывания и применять фильтр такой величины, чтобы весь осадок мог в нем поместиться, не наполняя его доверху. Осадок умеренно Промывают горячей водой, к которой прибавляют 1 г ацетата на 100 мл, так как иначе фильтрат неизбежно. будет мутным. Наконец, отсасывают осадок но возможности досуха, растворяют его в соляной кислоте и осаждают — на этот раз аммиаком, как описано в гл. Алюминий (стр. 565). Об обработке фильтрата, полученного при анализе горных пород, с целью выделения из него не выпавшего в осадок алюминия, перед осаждением сульфидов см. стр. 952. Марганец, цинк, никель и кобальт осаждают в соединенных фильтратах, как описано в разделе Осаждение сульфидом аммония (стр. 90). [c.105]

    Вероятно, одним из лучших методов отделения железа от других элементов нри анализе горных пород и подобных им материалов является осаждение его сульфидом аммония в присутствии тартратом (стр. 115) после предварительного отделения сероводородной группы сероводородом в растворе, содержащем минеральную и винную кислоты Этим методом железо может быть отделено от алюминия, титана, циркония, ниобия, тантала, урана, ванадия и фосфора. Элементы, сопровождающие железо при этом разделении, — никель, кобальт, цинк и маранец (частично) — редко встречаются в горных породах и легко отделяются, например никель и марганец, осаждением железа аммиаком. Сульфид железа для дальнейшей обработки нужно растворить. Для этого возможно два метода  [c.438]

    В обычном ходе анализа горных пород кобальт ведет себя подобно никелю, и если количество его не велико и все осадки, в хоДе анализа переосаждаются, то ббльшая часть кобальта останется в последнем фильтрате. В отличие от никеля небольшое количество кобальта переходит в осадок от аммиака. В несколько большем количестве, чем никель, он также захватывается осадками оксалата кальция и фосфата магния, особенно последним. Малые количества кобальта, присутствуюш ие в горных породах, обычно выделяются вместе с марганцем, никелем и цинком обработкой сульфидом аммония (стр. 89) перед осаждением кальция. При выполнении особо точных работ и в присутствии больших количеств кобальта отделение его следует проводить перед осаждением аммиаком железа, алюминия и подобных им элементов или же проводить осаждение этих элементов ацетатным методом. [c.469]

    Об определении малых количеств никеля и кобальта в горных породах см. О. Н а с к 1, hema Ztg., 46, 385 (1922). [c.962]

    Из новых работ отметим работу Сендэла и Перлиха но определению никеля и кобальта в силикатных породах. Определение никеля основано на осаждении его диметилглиоксимом из аммиачно-тартратного раствора анализируемой породы, экстрагировании полученного соединения хлороформом, взбалтывании хлороформного слоя с соляной кислотой для переведения никеля в воДную фазу и конечном его определении колориметрическим методом с диметилглиоксимом (см. стр. 468, сноска 2) при концентрации его, не превышающей 6 мкг в 1 мл. Этим методом можно обнаружить 0,0001% никеля в 0,5 г пробы медь, кобальт, марганец, хром и ванадий в количествах, в каких эти элементы встречаются в большинстве изверженных горных пород, определению никеля не мешают. [c.1034]

    Лодочникова H. В., К вопросу об определении малых количеств кобальта, никеля и меди в горных породах. Информационный сборник ВНИИ геологии, № 3, 116—128 (1956). [бб ] М а к а р ь я и ц А. И., 3 а г л о д и на Т. В,, Ш у в а л о в а Е, Д,, Определение малых количестн. меди, серебра и висмута в свинце. Сборник паучиых трудов Гос, НИИ цветных металлов, № 12, 130—137 (1956), [c.435]

    Навеску 0,5 г образца растворяют при нагревании в соляной кислоте при прибавлении малого количества азотной кислоты или перекиси водорода. После выпаривания досуха остаток растворяют в горячей воде, фильтруют в мерную колбу емкостью 250 мл и доводят до метки. Аликвотную часть в зависимости от предполагаемого количества кобальта (2—5 мл) переносят пипеткой в делительную воронку и к раствору прибавляют 4 мл 2%-ного раствора тирона и 1 мл 5%-ного раствора купраля. Стенки воронки ополаскивают водой, содержащей несколько капель спирта, чтобы воспрепятствовать задерживанию на стенках красного раствора тироната железа, и экстрагируют 25 мл этилацетата. После отделения слоя органической жидкости сливают водный слой и этилацетат промывают малым количеством дважды дестиллированной воды, содержащей 1,5 мм 2,5%-ного раствора сулемы (Н С1г), можно также применить раствор цианида калия. Когда оба слоя жидкости будут разделены, спускают слой этилацетата, окрашенный в зеленый цвет тиокарбаматом кобальта, в мерную колбу емкостью 25 мл и доводят спиртом до метки. Колориметрируют описанным выше способом. Само колориметрическое определение продолжается около 8 мин. Метод в особенности пригоден для анализа сталей, различных горных пород, получаемых при флотации концентратов и хвостов, и т. д. Например, при анализе быстрорежущих сталей были получены следующие результаты  [c.123]

    В то же время в течение всего алхимического периода (около 1000 лет) практическая и ремесленная химия продолжала свое развитие, почти независимо от алхимии. В средние века в Европе это развитие шло довольно медленно. Однако уже с XIII в. можно отметить более быстрый прогресс в развитии ряда отраслей химической техники. В это время началось усовершенствование способов добычи и переработки металлических руд, в особенности в части обработки мета.ллов и получения сплавов. В XIV в. в практику производства железа был внедрен доменный процесс. Зародилась металлургия сурьмы, висмута, цинка, кобальта, были усовершенствованы методы получения других цветных металлов. Усовершенствования были внесены и в способы добычи золота и серебра, и в методы их очистки от примесей других металлов. Горное дело и металлургия, возникшие в Европе еш е в X в., получили широкое развитие особенно в Германии (Саксония). В связи с усовершенствованием горного дела и металлургии в ремесленную практику уже в XIII в. вошло точное взвешивание, появились различные тины довольно чувствительных весов, возникли и иростейнше приемы пробирного искусства. [c.127]

    Поступление кадмия и кобальта в гидролитосферу происходит со сточными водами горно-обогатительной, машино- и приборостроительной, теплоэнергетической, угледобывающей промышленности. В пульпу обогатительных комбинатов они переходят из обогащаемых руд. Предприятия машино- и приборостроительной, а также электротехнической промыишенности сбрасывают кадмий в составе стоков гальванических цехов, осуществляющих кадмирование изделий. Присутствие кобальта характерно для дренажных вод угледобычи. Согласно данным [87а], средняя концентрация кобальта в шахтных водах угольных месторождений СССР составляет 0,3 мг/л при максимальном его содержании 6,61 мг/л. [c.305]


Смотреть страницы где упоминается термин Горные кобальта: [c.62]    [c.208]    [c.400]    [c.41]    [c.8]    [c.143]    [c.253]    [c.396]    [c.161]    [c.268]    [c.1033]    [c.175]   
Методы аналитической химии Часть 2 (0) -- [ c.0 ]

Полярографический анализ (1959) -- [ c.218 ]




ПОИСК





Смотрите так же термины и статьи:

Горный



© 2025 chem21.info Реклама на сайте