Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Технологическая схема газов

Рис. У-И. Технологическая схема газоперерабатывающего завода для переработки нефтяного попутного газа Рис. У-И. <a href="/info/1464817">Технологическая схема газоперерабатывающего завода</a> для переработки <a href="/info/872907">нефтяного попутного</a> газа

Рис. 7.12. Принципиальная технологическая схема установки получения окисленного битума с реакторами колонного и змеевикового типа. 1— печь 2— смеситель 3— змеевиковый реактор 4— испаритель 5— сепаратор 6— окислительная колонна 7— сепаратор смешения I— сырье II— сжатый компрессором воздух II— возсгух на охлаждение змеевикового реактора IV— битум V— черный соляр VI— газы в печь VII— водяной пар, VIII— вода Рис. 7.12. <a href="/info/671415">Принципиальная технологическая схема</a> <a href="/info/1102954">установки получения</a> <a href="/info/1606899">окисленного битума</a> с <a href="/info/128098">реакторами колонного</a> и змеевикового <a href="/info/50308">типа</a>. 1— печь 2— смеситель 3— <a href="/info/828590">змеевиковый реактор</a> 4— испаритель 5— сепаратор 6— <a href="/info/582816">окислительная колонна</a> 7— сепаратор смешения I— сырье II— <a href="/info/750444">сжатый компрессором воздух</a> II— возсгух на охлаждение <a href="/info/828590">змеевикового реактора</a> IV— битум V— черный <a href="/info/85774">соляр</a> VI— газы в печь VII— водяной пар, VIII— вода
Рис. 6.5. Принципиальная технологическая схема установки получения серы из сероводорода по методу Клауса I— сероводород Я— воздух /Я— сера IV- водяной пар V- газы дожига VI— конденсат Рис. 6.5. <a href="/info/671415">Принципиальная технологическая схема</a> <a href="/info/1102954">установки получения</a> серы из сероводорода по <a href="/info/44667">методу Клауса</a> I— сероводород Я— воздух /Я— сера IV- водяной пар V- газы дожига VI— конденсат
Рис. 8.9. Принципиальная технологическая схема установки каталитического крекинга Г-43-107 I— ги1 роочищенное сырье II— газы на АГФУ 14— не табильный бензин на стабилизацию IV—легкий га.юйль V— тяжелый газойль VI— декантат VII— водяной пар VHI- дымовые газы IX— вода X— во >дух XI— катализаторная пыль Рис. 8.9. <a href="/info/671415">Принципиальная технологическая схема</a> <a href="/info/309922">установки каталитического крекинга</a> Г-43-107 I— ги1 роочищенное сырье II— газы на АГФУ 14— не табильный бензин на стабилизацию IV—легкий га.юйль V— тяжелый газойль VI— <a href="/info/840686">декантат</a> VII— водяной пар VHI- <a href="/info/94045">дымовые газы</a> IX— вода X— во >дух XI— катализаторная пыль
    Для разделения газов пиролиза, содержащих углеводороды до Сз включительно, предлагается использовать в колоннах различные давления в нижних секциях высокое давление, а в верхних — низкое. Технологическая схема такой установки с получением 99%-го этилена приведена на рпс. У-21 [24]. Сырой газ проходит последовательно пропан-пропиленовую, этан-этиленовую и метановую колонны с выделением на каждой ступени пропан-пропиленовой, этановой, этиленовой и метановой фракций. Использование многопоточных теплообменников и сложных ректификационных колонн позволяет создать простую установку, содержащую минимальное число единиц оборудования. [c.298]


    На ранее построенных установках АТ и АВТ не было очистки компонентов светлых нефтепродуктов выщелачиванием, стабилизации бензиновых фракций, абсорбции газов и др. Для этих процессов сооружались самостоятельные установки на отдельной площадке. В результате усовершенствования технологии первичной переработки нефти и соответствующей аппаратуры, а также внедрения автоматизации начали сооружать на АТ или АВТ дополнительные блоки — электрообессоливания,-стабилизации бензиновых фракций, выщелачивания компонентов светлых нефтепродуктов, абсорбции и десорбции жирных газов. Таким образом, индивидуальные технологические установки соединились в комбинированные установки первичной переработки, называемые (независимо от числа технологических узлов и процессов) комбинированными атмосферно-вакуумными установками (ABT)j Объединенные в единую технологическую схему установки электрообессоливания, электрообезвоживания и атмосферно-вакуумной перегонки носят название ЭЛОУ —АВТ. Достоинство таких установок — более рациональное использование энергетических ресурсов АВТ. [c.24]

Рис. 7,3. Принципиальная технологическая схема установки термического крекинга дистиллятного сырья I — сырье II — бензин на стабилизацию UI — тяжелый бензин из К-4 V— вакуумный отгон V— термогазойль VI — крекинг-остаток VII — газы на ГФУ VIII — газы и водяной пар к вакуум-системе IX — водяной пар Рис. 7,3. Принципиальная <a href="/info/1471345">технологическая схема установки термического крекинга</a> <a href="/info/317718">дистиллятного сырья</a> I — сырье II — бензин на стабилизацию UI — тяжелый бензин из К-4 V— вакуумный отгон V— <a href="/info/189263">термогазойль</a> VI — <a href="/info/62949">крекинг-остаток</a> VII — газы на ГФУ VIII — газы и водяной пар к <a href="/info/1888974">вакуум-системе</a> IX — водяной пар
    На одном из нефтеперерабатывающих заводов при загрузке газомоторного компрессора 10 ГКН-4/1-55 произошел взрыв нагнетательного трубопровода четвертой ступени сжатия, на участке длиной 2,5 м (от обратного клапана до задвижки). Взрыв был вызван подсосом воздуха в ци-линдр четвертой ступени компрессора через неплотно закрытую задвижку нэ продувочной свече, которая согласно проекту была врезана на всасывающей линии четвертой ступени сжатия, и образованием взрывоопасной смеси воздуха с парами смазочных масел. В четвертой ступени компрессора при степени сжатия до 40 температура компримированного воздуха в нагнетательном трубопроводе может в течение 1—3 мин превышать 300 С, до момента поступления компримируемого газа из низких ступеней. Температура же самовоспламенения паров масла составляет 268 °С. Комиссия по расследованию аварии предложила изменить технологическую схему, чтобы исключить возможность попадания воздуха в компрессор через продувочную свечу разработать проект и выполнить обвязку компрессоров, обеспечивающую сброс избыточного давления газа на факел и остаточного на свечу при остановке компрессора установить обратный клапан на общей нагнетательной линии, соединяющей компрессорный цех факельного хозяйства с общезаводской магистралью компримируемого газа. [c.101]

    Преимущества магнезитового метода — возможность очистки запыленных газов, имеющих высокую температуру, отсутствие отходов и сточных вод, высокая степень извлечения диоксида серы (до 95—96%)). Недостатки — частые забивки насадок в абсорбционных башнях и выход нз строя абсорберов, большой расход энергии на регенерацию поглотителя, сложность технологической схемы, громоздкость оборудования и установки, для функционирования которых требуются значительные капитальные и эксплуатационные расходы. [c.59]

    Технологическая схема предусматривает очистку циркуляционного водородсодержащего газа и углеводородных газов. Для удале-нпя сероводорода принят метод очистки 13% раствором МЭА. Преимущества данного метода 1) высокэ[Я поглотительная способность абсорбента, позволяющая прп сравнительно нйзкйх з трТта1 на-очистку достигать требуемой глубины очистки газов 2) сравнительно низкая стоимость абсорбента 3) легкая регенерация загрязненных растворов. [c.75]

    Изменяя технологическую схему синтеза на кобальтовых катализаторах, например, вводя циркуляцию газа (циркуляционная схема), а на железных катализаторах изменяя состав газа, можно оказывать значительное влияние на состав продуктов синтеза. Удается варьировать содержание в них олефинов, выход бензина по отношению к дизельной фракции и парафину, а также выход кислородных соединений. [c.75]

    ТРАДИЦИОННЫЙ ПОДХОД К ФОРМИРОВАНИЮ ТЕХНОЛОГИЧЕСКОЙ СХЕМЫ ПРОИЗВОДСТВА ТОВАРНОГО ПРИРОДНОГО ГАЗА [c.226]

    Глава V. Синтез н анализ технологических схем ректификации углеводородных газов. .......... [c.5]

    Принципиальная технологическая схема процессов химической абсорбции не отличается от обычной схемы абсорбционного процесса. Однар(0 в конкретных условиях в зависимости от количества кислых газов в очищаемом газе, наличия примесей, при особых требованиях к степени очистки, к качеству кислого газа, и других факторов технологические схемы могут сун ест-венно отличаться. Так, например, при использовании аминных процессов при очистке газов газоконденсатных месторождений под высоким давлением и с высокой концентрацией кислых компонентов широко используется схема с разветвленными потоками абсорбента (рис. 53), позволяющая сократить капитальные вложения и в некоторой степени эксплуатационные затраты. Высокая концентрация кислых комионентов требует больших объемов циркуляции поглотительного раствора. Это не только вызывает рост энергетических затрат на перекачку и регенерацию абсорбента, но и требует больших объемов массообменных аппаратов, т. е. увеличения капитальнрлх вложений. Вместе с тем из практики известно, что в силу высоких скоростей реакций аминов с кислыми газами основная очистка газа происходит на первых по ходу очищаемого газа пяти—десяти реальных таре, 1-ках абсорбера на последующих тарелках идет тонкая доочистка. Этот факт послужил основанием для подачи основного количества грубо регенерированного абсорбента в середину абсорбера, а в верхнюю часть абсорбера — меньшей части глубоко-регенерированного абсорбента. Это позволило использовать абсорбер переменного сечения (нижняя часть большего диаметра, верхняя — меньшего), что снизило металлозатраты, а также сократить затраты энергии за счет глубокой регенерации только части абсорбента. [c.171]


    В работе [35] на примере разработки оптимальной схемы деметанизацни газов пиро пиза описано применение этого метода. В табл. П.З приведены исходные данные по процессу состав сырья, получаемых продуктов, температуры и давления. На рис. П-25 показаны принципиальные технологические схемы процесса, иллюстрирующие последовательность синтеза в качестве первоначального варианта (схема а) была принята обычная схема полной колонны с парциальным конденсатором при температуре хладоагента (этилена) минус 100 °С. Далее для конденсации и охлаждения верхнего продукта наряду с хладоагентом был использован дроссельэффект сухого газа (схема б). Затем исходное сырье охлаждали до температуры минус 62 С (схема в) н подвергали последовательной сепарации с подачей в колонну нескольких сырьевых потоков (схемы гид). Затем организовали промежуточное циркуляционное орошение в верхней частн колонны (схема е) и, наконец, — рецикл пропана с подачей его в промежуточный сырьевой конденсатор (схема ж). Соответствующие изменения температурного режима и стоимостные показатели процесса приведены в табл. П.4. Как видно, наибольшие затраты в простейшей схеме падают на потери этилена с сухим газом и на хладоагент, а по мере усовершенствования схемы эти статьи затрат существенно уменьшаются и становятся соизмеримыми с остальными элементами затрат для оптимальной схемы ж. [c.129]

    Для большинства технологических схем установок разделения газов пиролиза характерно двухстадийное извлечение метана — первичная деметанизация фракции Сг— Сз и вторичная деметаниза->ция этилен-этановой франции непосредственно перед колонной выделения этилена-концентрата в специальной отгонной колонне [31]. В работе [32] вторичную деметанизацию этилен-этановой фракции рекомендуется проводить одновременно с ее разделением в сложной ректификационной колонне с боковым отводам концентрированного этилена. [c.301]

    Без знания термодинамических свойств фильтрационного потока нефти и газа в пластовых условиях невозможно составить правильную технологическую схему проведения теплового воздействия на залежь. Таким образом возникла необходимость в специальной книге, в которой были бы приведены термодинамические свойства фильтрационного потока нефти и газа при различных пластовых давлениях и температурах. [c.5]

    После каждой перекачки горячего высоковязкого продукта все трубопроводы, в том числе и аварийные, прокачивают маловязким незастывающим продуктом, чтобы исключить застывание первого. При обнаружении участков изоляции, пропитанных нефтепродуктом, принимают меры к предотвращению ее самовоспламенения (заменяют пропитанную изоляцию, подводят водяной пар). Запорную и регулирующую арматуру на трубопроводах в зависимости от рабочих параметров и свойств транспортируемой среды устанавливают, руководствуясь РУ—75. Для сжиженных газов и легковоспламеняющихся жидкостей с температурой кипения до 45 °С, независимо от температуры и давления среды, арматура должна быть стальной. Расположение запорных устройств должно быть удобным и безопасным для обслуживания. Задвижки, вентили, краны и прочие запорные устройства должны обеспечивать надежное и быстрое прекращение поступления продукта в отдельные участки трубопроводной сети. Всякие неисправности в запорных устройствах на трубопроводах необходимо устранять. Нельзя оставлять задвижки открытыми на неработающих аппаратах, оборудовании или трубопроводах. Выключенные из технологической схемы аппараты, оборудование и трубопроводы отглушают. Задвижки и вентили на трубопроводах систематически смазывают. Нельзя применять для открытия и закрытия арматуры ломы, трубы и другие приспособления. [c.115]

    Для проверки работы отдельных узлов технологической схемы по необходимости проводят лабораторный анализ ряда продуктов гидрогенизата после реактора, неочищенного углеводородного газа, насыщенного раствора МЭА, конденсата, насыщенного газами, нестабильного бензина и ряда других продуктов. [c.154]

    Альбом технологических схем процессов переработки нефти и газа / Под ред. Б.И. Бондаренко. — М. Химия, 1983.— 128 с. [c.278]

    В практике инженера-химика встречается также большое количество других задач, которые могут быть сведены к экономическому сравнению. Для получения желаемого продукта из многих принципиально различных методов, при использовании которых образуются различные побочные продукты или применяется различное сырье, нужно выбрать один. На установленном производстве можно испробовать многие технологические варианты. Например, для предварительного нагревания сырья из ряда греющих агентов можно выбрать пар, органические теплоносители, расплавленные металлы или соли, электрический ток, топочные газы и т. д. Аналогично при абсорбции надо делать выбор из нескольких растворителей. Когда окончательно выбрана технологическая схема, следует еще при проектировании произвести наиболее удобную серийную расстановку машин и аппаратов. В подобных случаях часто применимы описанные выше статистические методы. Следует определить стоимость одного варианта, а затем сравнивать с ним остальные (подробно эта задача в настоящей книге не рассматривается). Необходимо учитывать, что оптимальными будут те технически возможные альтернативы, при которых себестоимость будет минимальной. [c.354]

    В связи с этим важное значение имеет безопасная и безаварийная эксплуатация трубопроводов и арматуры. Трубопроводы и арматура в технологических схемах нефтеперерабатывающих и нефтехимических заводов занимают большой объем. Для повышения безопасности на предприятиях нефтеперерабатывающей и нефтехимической промышленности разработаны Руководящие указания по эксплуатации, ревизии, ремонту и отбраковке стальных технологических трубопроводов, транспортирующих жидкие и газообразные неагрессивные и агрессивные среды (включая огне-взрывоопасные жидкости и сжиженные газы) в пределах рабочих давлений от 0,001 МПа (вакуум) до 10 МПа и рабочих температур от —150 до 700 °С. Однако все еще значительное число аварий обусловлено недостатками при эксплуатации трубопроводов. [c.7]

    Установка рассчитана на переработку нестабильной нефти Ромашкинского месторождения и отбор фракций и. к.—62, 62—140, 140—180, 180—220 (240), 220 (240)—280, 280—350, 350—500°С (остаток — гудрон). Исходное сырье, поступающее на установку, содержит до 5000 мг/л солей и до 2 вес. % воды. Содержание низкокипящих углеводородных газов в нефти достигает 2,5 вес. % на нефть. На установке принята двухступенчатая схема электрообессоливания, позволяющая снизить содержание солей до 30 мг/л и воды до 0,2 вес. %. Технологическая схема установки предусматривает двухкратное испарение нефти. Головные фракции из первой ректификационной колонны и основной ректификационной колонны вследствие близкого фракционного состава получаемых из них продуктов объединяются и совместно направляются на стабилизацию. Бензиновая фракция н. к.— 180 °С после стабилизации направляется на вторичную перегонку с целью выделения фракций н. к. — 62, 62—140 и 140—180 °С. Блок защелачивания предназначается для щелочной очистки фракций н. к.—62 (компонент автобензина) и 140—220 °С (компонент топлива ТС-1). Фракция 140— 220 °С промывается водой, а затем осушается в электроразделителях. [c.114]

    После получения фосфора в электродуговой печи (рис. 7.3,9) по технологической схеме газ, содержащий 220—230 г фосфора в [c.218]

    Технологические схемы блоков разделения гидрогенизатов гидроочистки и катализатов риформинга с получением высокооктановых бензинов зависят от сырья и давления реакции. На алю-мокобальтмолибденовых и платиновых катализаторах (давление реакции 4 МПа) газы из гидрогенизата и катализата выделяются обычно двухступенчатой холодной сепарацией. На I ступени выделяется водородсодержащий газ при давлении реакции и температуре около 40°С ( Б сепараторе высокого давления) на IIступени при этой же температуре и давлении 0,5—0,6 МПа отделяются растворенные углеводородные газы (в сепараторе низкого давления) (рис. 1У-21). В системе холодной двухступенчатой сепарации получается водородсодержащий газ (до 60—75% об. Нг) при сравнительно небольших потерях водорода с углеводородным газом. [c.231]

    СИНТЕЗ И АНАЛИЗ ТЕХНОЛОГИЧЕСКИХ СХЕМ РЕКТИФИКАЦИИ УГЛЕВОДОРОДН+ЫХ ГАЗОВ [c.266]

    Рас. 7. 3. Принципиальная технологическая схема установки ТКК I— реактор 2— парциальный конденсатор 3— коксонагреватель 4— сепаратор /— порошкообразный кокс,- и— сырье Ш— парообразные продукты реакции /V— рецирку— лят воздух VI— водяной пар VII— дымовые газы [c.77]

    В технологических схемах современных химических производств большой объем занимают трубопроводы и арматура, от состояния которых зависят условия безопасности. Для повышения безопасности на химических предприятиях разработаны и в 1970 г. изданы специальные Правила устройства и эксплуатации трубопроводов горючих, токсичных и сжиженных газов, в соответствии с которыми в промышленности проведена большая работа по улучшению состояния трубопроводов. Однако все еще известны случаи аварий, обусловленные недостатками эксплуатации трубопроводов. [c.10]

Рис. 10.16. Принципиальная технологическая схема установки одноступенчатого гид— рокре кинга вакуумного газойля I— сырье 11— ВСГ III— дизельное топливо IV— легкий бензи н V— тяжелый бензин VI— тяжелый газойль VII— углеводородные газы на ГФУ VIII— газы отдува IX— регенерированный раствор МЭА X— раствор МЭА на регене— рацш) XI— водяной пар Рис. 10.16. <a href="/info/671415">Принципиальная технологическая схема</a> <a href="/info/1461339">установки одноступенчатого</a> гид— рокре кинга <a href="/info/77224">вакуумного газойля</a> I— сырье 11— ВСГ III— <a href="/info/78734">дизельное топливо</a> IV— легкий бензи н V— тяжелый бензин VI— тяжелый газойль VII— <a href="/info/159078">углеводородные газы</a> на ГФУ VIII— газы отдува IX— <a href="/info/975339">регенерированный</a> раствор МЭА X— раствор МЭА на регене— рацш) XI— водяной пар
    В случае выброса горючих газов через разгерметизированнук> аппаратуру опасность взрыва и пожара может быть значительно-снижена применением паровой завесы. Для больших этиленовых установок расстояния, необходимые для рассеяния выбрасываемых газов ветром, значительно больше нормированных разрывов между оборудованием. Большие же разрывы часто усложняют технологическую схему и затрудняют нормальную эксплуатацию производства. Поэтому разработан барьер для разбавления горючих паров до безопасного их содержания водяным паром. При этом необходимое рассеяние горючего паром достигается при любом направлении ветра. Рассеивающий барьер состоит из сплошной легкой стены высотой 1,5 м и горизонтальной трубы с отверстиями для водяного пара, смонтированной в верхней части стены. Трубы могут быть разделены на секции по числу установок. Водяной пар поступает по распределительным трубам, подача его регулируется клапанами. [c.108]

    В отношении технологической схемы и оборудования процесс аналогичен аминному. Кислые газы поглощаются в абсорбере раствором карбоната насыщенный раствор регенерируется в отпарной колонне (десорбере). [c.176]

    При выборе технологической схемы и режима атмосферной nef егонки нефти руководствуются главным образом ее фракцион — ным составом и, прежде всего, содержанием в ней газов и бензи — ноьых фракций. [c.183]

    При необоснованных определениях категории производств большую опасность представляет применение без учета реальной обстановки механизмов, оборудования и электрооборудования обычного исполнения, которые могут быть источниками импульсов воспламенения. Большое число инициаторов, сосредоточенных по всей технологической схеме в различных местах производственного помещения или на открытых площадках, усугубляет опасность загорания и взрыва газо- и паровоздушных смесей. Ниже приведены примеры аварий, основными причинами которых были проектные недоработки и неправильное присвоение категории. [c.355]

    Основным недостатком фурфурола является его низкие термическая и окислительная способность. По этой причине в технологическую схему фурфурольной очистки масел приходится ввести дополнительную стадию деаэрации сырья, где под вакуумом с подачей перегретого водяного пара из сырьевого потока удаляются воздух и влага. Кроме того, для предотвращения окисления фурфурола его вынуждены хранить под защитьгым слоем масла или инертного газа. [c.239]

    С помощью простой технологической схемы (рис. 9) можно кратко пояснить метод. После нагрева в подогревателе до 350— 400 °С сырье пиролиза впрыскивают вместе с перегретым паром в реактор 7 с кипящим слоем, состоящим из кварцевого песка с диаметром песчннок 0,4—1,2 мм. В результате контакта с горячими дымовыми газами н прямого обогрева горящим мазутом песок накаляется до 1000 °С и пневмотранспортом через сборник 5 подается в реактор, где его температура составляет —850 °С. Сырье пиролиза нагревается в реакторе до необходимой температуры, время контакта 0,3—0,5 с. Нпже приведена температура нагрева различных видов сырья (в С)  [c.30]

    Типичная технологическая схема очистки нрирод1юго газа с использовапием физической абсорбции представлена на рис. 54. [c.179]

    Pl . 10.7. Принципиальная технологическая схема установки каталитического рифор— М1НГО со стационарным слоем катализатора I— гидроочииценное сырье II— ВСГ Ulen обильный катализат IV— сухой газ V— головная фракция [c.194]

    Технологическая схема подготовки газа состояла из стадий ката.титической конверсии природного газа в трубчатой иечи паровоздушной доконверсии природного газа в реакторе охлаждения газа каталитической конверсии окиси углерода в две стуиеяи очистки газа от двуокиси углерода в абсорбере, орошаемом раствором моноэтаноламина каталитической очистки конвертированного газа от окиси и двуокиси углерода. [c.210]


Смотреть страницы где упоминается термин Технологическая схема газов: [c.91]    [c.285]    [c.69]    [c.77]    [c.8]    [c.57]    [c.218]    [c.103]    [c.2]    [c.187]    [c.66]    [c.132]    [c.255]   
Технология азотной кислоты Издание 3 (1970) -- [ c.191 , c.192 ]




ПОИСК





Смотрите так же термины и статьи:

АНАЛИЗ ВОЗМОЖНЫХ ТЕХНОЛОГИЧЕСКИХ СХЕМ АДСОРБЦИОННОЙ ОСУШКИ ГАЗА

Варианты технологических схем блоков утилизации тепла дымовых газов

Гинстлинг Современные технологические схемы получения газов

Глава 9. Технологические схемы и аппаратура установок адсорбционной осушки газа

Значение охлаждения газа для работы химических цехов коксохимического завода. Технологические схемы первичного охлаждения газа и конденсации паров смолы и воды

Конверсия углеводородных газов технологические схемы

Методы перемещения сжиженных газов. . — Основные технологические схемы газораздаточных станций

Некоторые технологические схемы ожижения и разделения газов

Основные технологические схемы сбора н транспорта нефти и газа на промыслах

Отделение мокрого катализа, технологическая схема газа

Представленный в обзоре мэтериал может быть использован для выбора оптимальных технологических схем на предполагаемых объектах по глубокому извлечению легких углеводородов из этансодержащего природного газа СОДЕ РЖАН И Е РАЗВИТИЕ ГАЗОПЕРЕРАБАТЫВАЮЩЕЙ ПРОМЫШЛЕННОСТИ ЗА РУБЕЖОМ

Принципы выбора поглотителей и технологических схем процессов очистки газов от сернистых соединений

Промышленные технологические схемы конверсии окиси углерода при получении газа для синтеза аммиака. С. П. Челобова, Э. С. Хурина

Современные технологические схемы очистки газа

Современные технологические схемы процесса очистки газов

Современные технологические схемы, очистки газа. Примеры расчета установок

Схема газов

Схема технологического газа

Схема технологического газа

Схемы в газе

ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ ПЕРЕРАБОТКИ НЕФТИ И ГАЗА j Кантор. Перспективная схема переработки высокосернистых нефтей

ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ ПЕРЕРАБОТКИ НЕФТИ И ГАЗА Кантор. Перспективная схема переработки высоко сернистых нефтей

ТЕХНОЛОГИЧЕСКИХ СХЕМ ПЕРЕРАБОТКИ ГАЗА Расчет технологической схемы НТК

Технологическая схема выделения ацетилена из газов термического крекинга пропана

Технологическая схема выделения ацетилена из газов термоокислительного пиролиза метана и нефти аммиаком

Технологическая схема выделения ацетилена из газов термоокислительного пиролиза метана метанолом

Технологическая схема выделения ацетилена из газов электрокрекинга

Технологическая схема конечного охлаждения газа и улавливания бензольных углеводородов

Технологическая схема мембранно-абсорбционного метода Сравнение относительной экономической эффективности мембранного и мембранно-абсорбционного методов выделения диоксида углерода. Комбинированный метод выделения диоксида углерода из природного газа, включающий мембранный метод и дистилляцию. Технологическая схема комбинированного процесса выделения диоксида углерода из дымовых газов Оценки эффективности комбинированных методов Мембранный метод выделения гелия из природного газа

Технологическая схема мембранно-абсорбционного метода Сравнение относительной экономической эффективности мембранного и мембранно-абсорбционного методов выделения диоксида углерода. Комбинированный метод выделения диоксида углерода из природного газа, включающий мембранный метод и дистилляцию. Технологическйя схема комбинированного процесса выделения диоксида углерода из дымовых газов Оценки эффективности комбинированных методов Мембранный метод выделения гелия из природного газа

Технологическая схема окислительной конверсии природного газа

Технологическая схема очистки отходящих газов на силикагеле

Технологическая схема первичного охлаждения коксового газа и расчеты аппаратуры

Технологическая схема переработки сернистых газов

Технологическая схема подготовки газа к транспортированию с утилизацией метанола

Технологическая схема получения газов в газогенераторах с кипящим слоем

Технологическая схема получения сжиженного углекислого газа

Технологическая схема принципиальная обогащения нитрозных газов

Технологическая схема производства бытового газа из горючего сланца в камерных печах

Технологическая схема производства водяного газа периодическим способом

Технологическая схема производства извести и углекислого газа

Технологическая схема производства концентрированной азотной кислоты из нитрозных газов, полученных под давлением

Технологическая схема производства углекислого газа абсорбционно-десорбционным способом

Технологическая схема произвол из аммиака коксового газа

Технологическая схема улавливания бензола из коксового газа в скрубберах. Типы насадок и норма поверхности орошения. Бензольный скруббер и прочее оборудование для улавливания бензола. Характеристика масел

Технологическая схема установки компрессионного отбензинивания газа

Технологическая схема установки очистки, осушки природного газа

Технологические схемы высокотемпературной конверсии углеводородных газов под давлением до

Технологические схемы деметанизации газов пиролиза

Технологические схемы депропанизации газов пиролиз

Технологические схемы компрессии газа пиролиза

Технологические схемы компримирования газа пиролиз

Технологические схемы конверсии природного газа

Технологические схемы конечного охлаждения газа и улавливания аммиака водой. Состав скрубберной аммиачной воды

Технологические схемы конечного охлаждения коксового газа, улавливания и получения сырого бензола и расчеты аппаратуры

Технологические схемы непрерывных способов получения водяного и парокислородных газов

Технологические схемы осушки газа

Технологические схемы осушки газов

Технологические схемы очистки газа пиролиза

Технологические схемы очистки газа этаноламином

Технологические схемы очистки газов

Технологические схемы очистки конвертированного газа

Технологические схемы перемещения сжиженных углеводородных газов

Технологические схемы переработки газа методом

Технологические схемы пиролиза углеводородных газо

Технологические схемы подготовки газа к транспорту

Технологические схемы получение доменных газов

Технологические схемы получения сернистого газа

Технологические схемы производства газа из пылевидных топлив

Технологические схемы производства энергетического (отопительного) газа

Технологические схемы промывки газов пиролиза

Технологические схемы процесса конверсии углеводородных газов

Технологические схемы процесса переработки газа методом

Технологические схемы процессов переработки газа, газового конденсата и нефти

Технологические схемы разделения газов

Технологические схемы разделения газов пиролиза

Технологические схемы сепарации газа

Технологические схемы сероочистки коксового газа

Технологические схемы тонкой очистки газа

Технологические схемы установок комплексной подготовки нефти, газа и конденсата к транспорту

Этаноламиновая очистка газов технологическая схема



© 2025 chem21.info Реклама на сайте