Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нагревание, способы

    Регенерацию теплоты можно проводить непрерывным способом, когда в качестве теплового агента применяется, например, твердый материал небольшого зернения, жидкость или даже газ, движущиеся в системе и поглощающие периодически теплоту горячего носителя, а затем отдающие ее материалу, который нужно нагреть. Такая установка, использующая твердые гранулы (или мелкие камни, гальку), показана на рис. 1Х-39. Она может применяться для нагревания воздуха, водорода, метана, водяных паров или других газообразных веществ в различных промышленных процессах. Гранулы диаметром 8—15 мм нагреваются в верхней камере 2 при непосредственном соприкосновении (прямой теплообмен) с отдающим теплоту носителем, которым может быть любой газ с высокой температурой (например, продукты сгорания). После перемещения в нижнюю камеру 3 гранулы отдают теплоту газам, которые нужно нагреть. Подъемником 1 гранулы транспортируются снова на верх камеры 2. В среднем цикл перемещения гранул составляет 30—50 мин. Нижняя камера может также использоваться как реактор для проведения высокотемпературных реакций в газовой фазе (например, для каталитического крекинга нефтепродуктов) тепловой агент, в этом случае одновременно является катализатором. [c.387]


    Термический крекинг проводится двумя способами. Первый способ заключается в том, что сырье крекируют до образования жидкого крекинг-остатка (крекинг-мазута), во втором способе конечным продуктом крекинга является кокс. В первом случае высококипящие составные части продуктов крекинга, кипящие выше температуры кипения бензина, удаляются и не возвращаются на крекинг во втором случае все фракции, кипящие выше температуры кипения бензина, возвращаются в крекинг-установку и там после нагревания в специальном сосуде остаются до образования кокса. [c.18]

    В отдельных случаях как выпаривание, так и упаривание проводят с применением разрежения (вакуума). Этот способ применяют, если в растворе содержатся вещества, не выдерживающие нагревания и разлагающиеся при этом. [c.147]

    Кроме того, известно, что теплопередачу приходится осуществлять при помощи различных газообразных, жидких и твердых теплоносителей, которые обладают различными физическими свойствами. Для успешного решения указанных задач необходимо располагать основными зависимостями по теплопередаче наиболее важных технических материалов воздуха, воды и водяного пара, а также и других материалов, которые применяются в химической промышленности. Теплопередача в промышленности осуществляется в различных условиях. Так, в некоторых случаях она протекает при очень большом давлении и при высокой температуре, в других— при очень низкой температуре или низком давлении. Интенсивность теплообмена в значительной степени зависит от того, в каком состоянии находится соответствующий материал, или от способа, каким осуществляется теплопередача. В частности, интенсивность теплообмена различна для нагревания или охлаждения, испарения или конденсации. Значительную роль играют в данном случае условия производства, чистота поверхностей, коррозия и другие факторы, от которых зависит выбор материалов и наивысших допускаемых температур с учетом качества продукта или перерабатываемого сырья. [c.7]

    Свойства сажи зависят от способа термического разложения (неполное сгорание в пламени или при нагревании паров или газов до температуры разложения), метода осаждения образовавшейся угольной взвеси и, наконец, от вида использованного сырья. Поэтому в зависимости от способа получения существуют различные сажи сажа пламенная сажа, выделившаяся из продуктов сгорания или [c.119]


    По способу, разработанному Реппе, реакция олефипов с окисью углерода и водой может легко проходить в присутствии карбонила никеля и некоторых органических кислот при нагревании в автоклаве до 170° [51]. Течение реакции можно представить следующим уравнением  [c.219]

    Этим способом можно подвергать пиролизу как тяжелые нефтяные фракции, так и газообразные парафиновые углеводороды. Очень сильное коксообразование не имеет значения для этого процесса, так как корунд, применяемый в качестве теплоносителя, освобождается от кокса прямым нагреванием. Установка работает непрерывно. Труднейшей задачей в этом процессе является подача шариков в подогреватель, так как здесь они подаются не газлифтом, а при номощи элеватора. [c.61]

    И. Определение коэффициентов теплообмена в зернистом слое при стационарном режиме. Стационарный режим теплообмена обеспечивается, еслн все элементы слоя — постоянные источники теплоты. Возможны два способа нагревания слоя. [c.144]

    Термические способы (упаривание, дистилляция, вымораживание и др.) позволяют разделить эмульсию на практически чистую воду (конденсат) и сгущенный масляный остаток, пригодный для утилизации. Недостатки способов — высокая энергоемкость и возможность разрушения масляной фазы при нагревании. Способы применимы для обработки небольшого количества эмульсии при наличии дешевых источников тепла. [c.188]

    Так, например, бутадиен можно регенерировать из такого соединения с двуокисью серы нагреванием до 125°. Этот способ мон ет быть использован для получения чистых диенов, когда они находятся в смеси с другими близко кипящими моноолефинами или парафинами. В табл. 86 приведены температуры плавления и разложения некоторых продуктов присоединения двуокиси серы к диенам. [c.256]

    Пламенное напыление. Порошкообразная твердая смазка, доведенная нагреванием до размягчения, наносится под давлением на предварительно подготовленную и нагретую металлическую поверхность. Затем покрытие оплавляют пламенем горелки, что способствует получению более равномерной толщины и образованию гладкой поверхности. Толщина покрытий, получаемых этим способом, составляет 0,1—3 мм и зависит от размера частиц порошка. [c.209]

    Рассмотренный способ сравнительно мало точен, так как при нагревании в стеклянной посуде едкий натр реагирует со стеклом, на что затрачивается некоторое (не учитываемое) количество щелочи. [c.310]

    Перемешивать растворы можно различными способами. Например, можно пропускать через раствор по стеклянной трубке струю какого-либо индифферентного газа. Некоторое перемешивание происходит также при неравномерном нагревании раствора, достигаемом при смещении пламени горелки от центра дна стакана к его краю и вызывающем возникновение в жидкости конвекционных токов. С повышением температуры раствора увеличивается скорость диффузии и, кроме того, вследствие понижающейся при нагревании вязкости жидкости уменьшается сопротивление ее движению ионов через раствор, что улучшает условия электролиза. [c.438]

    Сильное нагревание при прохождении ударных волн позволяет осуществлять сплавление металлов, резко отличающихся по температурам плавления и кипения, например вольфрама и марганца, хотя температура плавления вольфрама 3380°С, а марганец кипит уже при 2080"С. Другими способами такой сплав получить не удается. [c.204]

    Для практических целей наиболее удобно разлагать комплекс путем растворения, в особенности горячей водой. Углеводороды, выделенные из комплексов, образуют несмешивающийся слой над водным раствором мочевины, от которого они легко могут быть отделены. Летучие органические вещества удаляют нагреванием комплекса (высушивание иля отгонка с паром) и собирают освобожденные углеводороды по море их выделения. Действительно, предварительное разделение на фракции может-быть осуществлено таким способом или путем частичной экстракции рас творителем. Менее стабильные комплексы выделяются при этом в первую, очередь и могут быть собраны. [c.223]

    Наилучшим способом является хранение чистых углеводородов в запаянных стеклянных ампулах в атмосфере азота, не содержащего примеси кислорода. Перед запаиванием образец углеводорода дегазируется нагреванием в вакууме и удаленный газ заменяется чистым азотом. Если изготовить ампулы с длинными шейками, то можно много раз запаивать их после взятия образца, что позволяет сохранять углеводород в течение длительного времени в одной и той же ампуле. [c.504]

    Сравнивая способы разрушения аддукта нагреванием с отгонкой фенола и экстракцией, можно отметить следующее. Преимуществами метода с нагреванием являются простота и экономичность, однако [c.133]

    Этим способом можно переработать в водородсодержащий газ очень тяжелое углеводородное сырье, например, мазут (табл. 32, № 1). При конверсии такого продукта с водяным паром цикл работы аппарата продолжительностью 8—9 мин делится на две фазы. В первой рабочей фазе через слой перегретого катализатора (температура 870° С) пропускают сырье, предварительно тщательно диспергированное в форсунках, и перегретый пар. Во второй фазе нагревания горячие дымовые газы горения мазута нагревают охлажденный на первой стадии слой катализатора. Чтобы при этом одновременно обеспечить выжигание углерода, отложившегося на катализаторе, к горячим дымовым газам подмешивают воздух. Примерно 50% углерода, вводимого в слой катализатора в составе углеводородного сырья, отлагается на катализаторе. Содержание углерода в катализаторе достигает 10%. [c.51]


    Папболее определенными по составу являются гидриды щелоч ных п щелочноземельных металлов. Пх получают путе.м пепосрсд-ственного соединения элементов при нагревании. Способ атот и принципе очень прост, но для по.мучения чистых продуктов пу кно соблюдать ряд подчас трудно выполнил1ых условии. [c.164]

Рис. 162. Фильтрование при нагревании. Способ нагревания воронки с фильтром парами растворителя непосредст-ьенно перед фильтрованием. Рис. 162. Фильтрование при нагревании. <a href="/info/152451">Способ нагревания</a> воронки с <a href="/info/742280">фильтром парами</a> растворителя непосредст-ьенно перед фильтрованием.
    В нредыдуш их разделах были рассмотрены способы получения олефинов дегидрированием парафиновых углеводородов без уменьшения числа углеродных атомов в молекуле. Этаи дегидрируется в этилен простым нагреванием до высокой температуры, более высокомолекулярные углеводороды, как пропан, бутан, пентан, дегидрируются каталитическим способом. Высокомолекулярные парафиновые углеводороды — гексан, гептан и т. д. — не могут быть превращены экономически приемлемым способом в олефины с раттм числом атомов С, так как в этом случае преобладают процессы крекинга. [c.49]

    Сло игые эфиры ароматических кислот получают взбалтыванием водного раствора спирта или фенола с избытком щелочи и хлорангидрида соответствующей кислоты на холоду или ири слабом нагревании (способ Шотена-Баумапа). [c.471]

    Летучесть при высоких температурах. В ряде работ изучалась возгонка микроколичеств (достаточно малых, чтобы они не покрывали всю несущую поверхность целиком) радиосвинца (ThB и RaB), радиовисмута (Ra ) и полония при высоких температурах, влияние на нее температуры, продолжительности нагревания, способа осаждения и природы несущей поверхности и газа (41, 54, 32, 2, 52, 26, 39, 30]. Эти работы привели к ожидаемому результату, что при заданной температуре может улетучиться только определенная доля радиоэлемента, т. е. летучесть зависит от того, сколь плотно покрыта поверхность возгоняемым элементом. Повидимому, отдельные атомы радиоэлементов прикреплены на поверхности к активным центрам различного рода. Различные несущие поверхности проявляют различную степень сродства к атомам, так, например, возгонка полония с платины начинается при 350°, а с палладия—только при 500—600 [27, 38]. Аналогично, астатин держится на стеклянной поверхности значительно слабее, чем на поверхности золота или платины [29]. Летучесть А-, В- и С-продуктов в окисляющей атмосфере оказывается значительно меньшей, чем в инертной атмосфере или в вакууме [411. Наконец, летучесть уменьшается по мере старения препарата [38]. Возгонка чаще идет как возгонка отдельных атомов, а не целых групп [21]. Много данных относительно освобождения полония с горячих поверхностей будет изложено-в гл. IX, п. 3. [c.25]

    Дерево, кожу и другие пористые материалы склеивают без нагревания. Способ предназначен главным образом для ремонтных целей. Технология процесса сводится к следующему 25%-ный раствор поливинилформальэтилаля (винифлекс) з смеси дихлорэтан-Ьэтиловый спирт (1 1) смешивают с 5% гидроокиси железа. Полученную пасту наносят на листовой асбест с таким расчетом, чтобы на поверхности после высыхания остался слой клея толщиной около 0,5—1.0 мм. На требующий ремонта участок металлического изделия накладывают лластырь и производят склеивание при нагревании под давле-нием 2.  [c.331]

    Полихлорвинил — нетрючий белый порошок, без вкуса и запаха, почти нерастворимый во всех растворителях на холоду, но растворимый в хлорированных углеводородах при нагревании. Способ перехода от полихлорвинила к каучукоподобному материалу— коросилу — основан на том, что при повышенных температурах полихлорвинил набухает и растворяется в трикрезилфосфате с образованием продуктов студнеобразной структуры различного характера — от клея до эбонитоподобной резины. Полихлорвинил нуждается в добавке стабилизатора для защиты от разложения. При переработке полихлорвинила может происходить выделение хлористого водорода. В качестве стабилизаторов применяют углекислые или хромовокислые соли свинца и глет. Стабилизатор прибавляется в количестве около 5% от веса полимера. После пластификации и стабилизации получается каучукоподобный продукт с удельным весом порядка 1,2—1,4. [c.414]

    Методы хлорирования. Хлор медленно реагирует с парафиновыми углеводородами в темноте при нормальных температурах, поэтому хлорирование осуществляется активированием хлора посредством нагревания, света или катализаторов. В промышленности применяют термические и фотохимические методы, и в зависимости от способа активации процессы классифицируются как фотохимические жидкофазные, термические жид-кофадные, фотохимические нарофазные или термические парофазные. [c.56]

    Новейший способ окнслепия м- и и-ксилолов в соответствующие дикарбоновые кислоты состоит в нагревании ксилола с элементарной серой в присутствии водного раствора сульфата аммоппя нри температуре 200—ТОО " под давлением. При окислепии получаются амиды пли соли аммония, которые легко могут быть переведены в соответствующие ки( лоты [4]. [c.268]

    Солянокислые соли алкилизотиомочевины можно сравнительно легко получить по способу Уилера и Бристола [39] — нагреванием галоидных алкилов с тиомочевиной — или же из соответствующих спиртов—нагреванием их с тиомочевиной и галоидоводородной кислотой  [c.381]

    По одному из способов сульфохлориды переводят в сульфофториды, которые в отличие от них обладают исключительной термической устойчивостью. В результате моно- и дисульфофториды с успехом отделяются друг от друга ректификацией. Сульфофториды получают из сульфохло-Р Идов относительно легко и с хорошими выходами при нагревании последних с концентрированными водными растворами фтористого калия [145]. В основу второго способа разделения моно- и дисульфохлоридов положено наблюдение, что вследствие более высокого содержания кислорода ди- и полисульфохлориды уже не растворяютс , в пентане. Поэтому ди- И полисульфохлориды от продуктов монозамещения можно отделить, добавив к их смеси относительно большое количество пентана и перемещав все вместе при охлаждении до —30°. В этих условиях моносульфохлориды растворяются еще легко, в то время как ди- и полисульфохлориды полностью не растворимы [146]. [c.598]

    Производные ЭО (гипобромиты и гипоиодиты) по свойствам и способам получения подобны гииохлоритам. При нагревании они лег-ю диспропорционируют  [c.304]

    Высушивание в эксикаторе. Высушивание веществ, не выдерживающих нагревания, можно проводить также в экс11каторе, содержащем водопоглощающие вещества (см. стр. 154). Этот способ высушивания является самым безэпасны. л, однако он длителенл1 про- [c.158]

    Теплоемкость — количество тепла, необходимое для нагревания единицы массы вещества на один градус. Различают истинную и среднюю (С) теплоемкости, соответствующие либо бесконечно малому изменению или разности температур. В зависимости от способа выражения состава вещества различают массовую, польную и объемную теплоемкости. Чаще применяют массовую теплоемкость, единица ее измерения в СИ — Джоуль на килог — рамм — Кельвин (Дж/кг К), допускаются также кратные единицы — кДж/кг К, МДж/кг К. Различают также изобарную теплоемкость (при постоянном давлении — С ) и изохорную теплоемкость (при постоянном объеме — С ). [c.84]

    Перегонка с постепенным испарением состоит в постепенном нагревании нефти от начальной до конечной температуры с непре — ывным отводом и конденсацией образующихся паров. Этот способ г ерегонки нефти и нефтепродуктов в основном применяют в лабораторной практике при определении их фракционного состава. [c.160]

    Выбор способов подвода тепла, типа и конструкции аппаратов определяется экономическими соображениями, назначёнием процесса и его безопасностью. Наиболее пожароопасными являются процессы нагревания топочными газами с применением открытого огня. К ним относятся процессы,. проводимые в печах периодиче- [c.132]

    Характеристикой термоокислительной стабильности топлив в настоящее время принято считать способность топлива при на-, греве образовывать нерастворимые осадки и смолы. Чем больше смол и осадков образуется в топливе при нагревании, тем ниже стабильность топлива. Коррозионные свойства топлив оцениваются по потере веса мета.ила (чаще всего бронзы), помещенного в нагретое топливо. Одним иа таких способов [961 были определены стабильпость и коррозионные свойства некоторых топлив с различным содержанием серы (табл. 50). [c.85]

    Существует, однако, теоретическая возможность регенерации теплоты отходящих газов для подогрева воздуха, направляемого на реакцию, поэтому на основе предварительного анализа нельзя полностью дискредитировать метод. Разобранный способ получения N0 в электрической дуге давно не используется в промышленности, но исследования метода, например, при нагревании входящих газов до температуры 2000°С и быстром охла5кдении продуктов в регенераторах по-прежнему проводятся. [c.60]

    В производстве БНК используется бутадиен того же качества, что и в производстве бутадиен-стирольных каучуков. Акрилонитрил применяется с концешрацией выше 99%. Он получается различными способами, из которых важное значение приобрел синтез его из пропилена, аммиака и кислорода. Акрилонитрил характе-рпзуется следующими свойствами т. кип. 77,3 °С, растворимость в воде 7,3%, растворимость воды в акрилонитриле 3,17о- Не содержащий посторонних примесей акрилонитрил устойчив к окислению на воздухе и нагреванию. Как технический продукт хранится в присутствии гидрохинона, р-нафтола и др. Двойная связь акрилонитрила обладает высокой реакционной способностью, обусловленной ее поляризацией цианогруппой, атом азота которой смещает я-электроны двойной связи и понижает ее электронную плотность. Благодаря поляризующему влиянию цианогруппы акрилонитрил обладает способностью к полимеризации и сополимеризации [7, 8]. [c.358]

    Инициаторы полимеризации. Инициирование цепей является одним из наиболее сложных вопросов в свободно-радикальной полимеризации, поскольку практически все известные способы получения свободных радикалов тем или иным путем могут быть использованы для этой цели. Это чрезвычайно важно, так как успех любой реакции полимеризации зависит от постоянной и подходящей скорости получения активных центров. Некоторые мономеры, особенно стирол (и, по-видимому, стиролы с замещениями в кольце), подвергаются некатализируемо11 реакции полимеризации при нагревании без добавления инициаторов. Эта термическая реакция была исчерпывающе изучена [22]. Однако точно природа реального процесса инициирования все еще не известна. С энергетической и кинетической точек зрения процесс является, по крайней мере, бимолекулярным [46] большинство исследователей постулирует образование из мономера в результате бимолекулярной реакции дирадикала молекулы мономера соединяются по принципу хвост к хвосту , как указано ниже, [c.133]

    Единственным другим мономером, для которого имеются определенные доказательства термического инициирования цепной реакции, является метилметакрилат. В )том случае термическое инициирование идет, по-видимому, медленно, хотя ито не согласуется с его фактической скоростью [10, 151]. Другие же мономеры, как правило, или стойки при нагревании прп тщательном устранении инициаторов, или же претерпевают конденсацию типа реакции Дильса—Альдера, как, нанример, акрилонитрил, который дает дицианоциклобутан [33]. В соответствии с этим термическое инициирование не представляется широко распро-страненным способом инициирования полимеризации. [c.134]

    Термоокислительную стабильность масел в объеме (методы FTMS 5308, ASTM D 943-76 и D 2893-72, 1Р 48/67, 280/73 и 306/75) оценивают нагреванием масла в стеклянном сосуде в присутствии металлических катализаторов при одновременном пропускании через масло воздуха или кислорода. После завершения испытания определяют степень изменения свойств масла (накопление нерастворимых продуктов, увеличение вязкости и кислотного числа). По другому способу (метод ASTM D 2272-67), масло нагревают в герметично закрытой бомбе в присутствии медного катализатора (в некоторых случаях с добавкой воды) и кислорода фиксируют время, необходимое для снижения давления в бомбе до заданного уровня. [c.120]


Смотреть страницы где упоминается термин Нагревание, способы: [c.156]    [c.253]    [c.170]    [c.37]    [c.157]    [c.28]    [c.79]   
Специальная аппаратура промышленности органических полупродуктов и красителей (1940) -- [ c.63 ]




ПОИСК





Смотрите так же термины и статьи:

Использование различных способов нагревания

Нагревание

Нагревающие агенты и способы нагревания

Способы нагревания и охлаждения

Способы нагревания п охлаждения Обогрев дымовыми газами

Способы нагревания прядильных головок

Способы охлаждения и нагревания пресс-формы

Теплота подвод нагревание способ



© 2024 chem21.info Реклама на сайте