Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплавы определение алюминия

    ОПРЕДЕЛЕНИЕ АЛЮМИНИЯ В МЕТАЛЛАХ И СПЛАВАХ Определение алюминия в железе, стали и ферросплавах [c.209]

    Примечание. Цинк, свинец, никель, олово и марганец в тех количествах, в которых они находятся в медно-цинковых сплавах, определению алюминия не мешают. Влияние ионов железа устраняют введением в раствор [c.69]

    Б. Определение алюминия в медно-цинковых сплавах [c.136]


    Опыт 7.J Определение алюминия в сплавах [c.174]

    Около 40% производимого цинка используют для цинкования железа, определенное количество — в гидрометаллургии для цементации, при производстве гальванических элементов. Сплавы цинка (главным образом латуни и жидкотекучие литейные сплавы с алюминием, медью и магнием) обладают ценными свойствами и широко применяются в различных отраслях промышленности. Они пригодны также в качестве полиграфических сплавов для литья шрифтов. [c.384]

    Некоторые металлы и сплавы — титан, алюминий, коррозионно-стойкие (нержавеющие) стали — в определенных условиях не подвергаются электрохимической коррозии вследствие так называемой пассивности. Пассивность — явление сложное, природа его до конца не изучена, но появление пассивности связано с образованием на поверхности металла адсорбционных слоев или пленок. [c.7]

    Коррозионной усталости в определенных условиях подвержены практически все конструкционные сплавы на основе железа, алюминия, магния, меди, никеля, титана и других металлов. Интенсивность влияния коррозионной среды на сопротивление усталости определяется ее агрессивностью, структурным состоянием металла, его дефектностью, состоянием поверхности изделий, их геометрией и условиями нагружения. Наиболее полно изучена коррозионная усталость углеродистых и легированных сталей и значительно меньше — сплавов титана, алюминия и других металлов. [c.49]

    Методы определения алюминия при маскировании цианидом разработаны для сталей [585, 793, 1061, 1196], ферромолибдена [857], для медных [698, 702, 1250] и цинковых [157, П09] сплавов. [c.38]

    Бензоатный метод выделения и определения алюминия применен к медным [520, 521, 676, 1015], магниевым [362, 976, 1199] и цинковым [976] сплавам, к титановым концентратам [209], к фосфатным породам [1275]. Бензойная кислота была использована в схеме качественного анализа в присутствии фосфатов [537]. [c.52]

    Наиболее обстоятельное изучение фторидного (криолитового) метода определения алюминия провел Яковлев [513]. Фторидный метод является одним из наиболее ценных весовых методов определения алюминия. Он очень селективен и позволяет просто и сравнительно быстро определить алюминий в материалах сложного состава. сталях, сплавах на основе Си, N1 и Со, при различных сочетаниях легирующих компонентов. Фториды Мо, V, МЬ, 2г, Т1 и Ре имеют значительно большую растворимость по сравнению с растворимостью криолита и остаются в растворе не мешают также Со, Ы и Сг. [c.57]


    Титрование с ксиленоловым оранжевым описано для определения алюминия в сталях [712], в титановых сплавах [1173], ферротитане [63], магниевых сплавах [429], алюминиевой бронзе [260], в сплавах никеля с алюминием [263], в бинарных сплавах алюминия с медью [345], с цирконием [434], железом [345], с титаном [665], в тройных сплавах с цирконием и никелем [295], в бокситах, нефелиновых рудах и концентратах [16, 71, 558, 877], каолине [147, 680], в различных минералах, рудах и горных породах [23, 71, 166, 229, [c.69]

    ДЦТА использована для определения алюминия в высоколегированных жаропрочных сплавах [600], в медных сплавах [1082], силикатах [704, 1087], хромовых рудах и огнеупорах [507], марганцевых рудах [509], в основных шлаках [509]. [c.81]

    Спектральные методы определения алюминия нашли очень широкое применение при анализе металлов, сплавов и других материалов. Аналитические линии алюминия, используемые при спектральном. анализе, находятся в ультрафиолетовой области спектра. В табл. 13 приведены основные чувствительные линии алюминия. Наиболее чувствительные линии алюминия в дуге — линии с к = = 3961,531 3944,031 и 3082,161 А. Из них чаще всего пользуются линиями с X = 3082, 16 и 3961, 53 А. Самые чувствительные линии [c.147]

    При определении алюминия в урановых сплавах предварительно отделяют уран ионообменной хроматографией [1092]. [c.158]

    Об определении алюминия в сплавах золота см. работу [830], а об определении в платиновых металлах — работы [20, 60]. [c.159]

    Метод применен для определения алюминия в сталях, бронзах, магниевых и цинковых сплавах, а также в минералах [703.  [c.164]

    Метод использован для определения алюминия в глинах, каолине [143, 1012, 1018, 12431, в различных минералах [10181, в продуктах флотации глин и бокситов [11611, в сплавах алюминия с железом [4621. [c.167]

    Определение алюминия в меди и медных сплавах [c.214]

    Фотометрические методы. Для определения алюминия в медных сплавах можно рекомендовать фотометрический метод с эриохромцианином R [2501. [c.215]

    Примечание. Цинк, свинец, никель, олово и марганец в тех количествах, в которых они находятся в медно-цинковых сплавах, определению алюминия не мешают. Влияние ионов железа устраняют введением в раствор аскорбиновой кисйоты, доторая восстанавливает ионы Ре до образующих с эриохромцианином [c.112]

    Примечание. Цинк, свинец, никель, олово и марганец в тех копи-нествах, в которых они находятся в медно-цинковых сплавах, определению алюминия не мешают. Влияние ионов железа устраняют введением в раствор аскорбиновой кислоты, которая восстанавливает ионы Ре + до Fe ", образующих с эриохромцианином бесцветный комплекс влияние ионов меди устраняют добавлением тиосульфата натрия, образзгаощего бесцветный тиосульфатный комплекс. Анализ выполняется за 12—15 мин с ошибкой, не превышающей 3 отн. %. [c.94]

    Задача количественного анализа обычно состоит в определении процентного содержания искомого элемента в пробе, которое вычисляют на основании весов навески и весовой формы. Рассмотрим в качестве примера вычисление процентного содержания магния в сплаве с алюминием на основании таких данных анализа навеска сплава равна 1,0135 г состав весовой формы Mg2P20,, а ее вес 0,1325 г. [c.150]

    Для определения алюминия в образце сплава латуни, бронзы) берут две навески по 0,5 г, помещают каждую в коническую колбу емкостью 50 мл и растворяют прп нагревании, добавляя 5 мл раствора азотной кислоты. После растворения переносят раствор в мерную колбу емкостью 100 мл, доводят объем раствора водой до метки. Берут три мерные колбы емкостью 100 мл, в 1-ю вводят 20 мл приготовленного раствора, во 2-ю колбу—30 мл того же раствора и в 3-ю — также 30 мл приготовленного раствора и добавляют 0,1 мг стандартного раствора алюминия. Во все колбы добавляют по 2 мл аскорбиновой кислоты, 0,25 мл раствора тиосульфата натрия, тщательно растворы перемешивают, доводят раствор до рИ 2 по индикаторной бумажке добавлением раствора NaOH или НС1, приливают 5 мл реагента, 20 мл ацетата натрия и доводят объем раствора водой до метки. Измеряют оптическую плотность второго раствора и третьего но отношению к 1-му раствору при Х 535 нм [c.136]

    Легкие сплавы, содержащие в качестве основного элемента алюминий, имеют серебристо-белый цвет и растворяются в NaOH. Для определения алюминия небольшое количество сплава обрабатывают несколькими каплями концентрированного раствора NaOH. В присутствии алюминия выделяется водород. С магниевыми сплавами щелочи не реагируют. [c.454]

    При определении алюминия в магниевых сплавах с применением 8-оксихинолина применяют 0,5раствор бромид-бромата. Для приготовления такого раствора — 14 г бромата калия и 50,0 з бромида калия растворяют в воде, раствор фильтруют и разбавляют водой до 1 л. [c.173]


    Ряд авторов определяет сумму алюминия и железа и вводит поправку на последнее после определения его в аликвотной части раствора [369, 567, 623, 751]. Метод титрования с дитизоном описан для определения алюминия в сталях, в металлическом уране и его сплавах [833, 1091], в цементе [623], в силикатах и горных породах [223а, 557, 567, 707, 751, 1244, 1288], в кислотных водах [639, 654] и в других материалах. [c.71]

    Метод комплексометрического определения алюминия обратным титрованием раствором железа с применением сульфосалициловой кислоты нашел очень широкое применение в лаборатория,х. Его используют для определения алюминия в ферросплавах [160, 588, 589], бронзах [354, 976], в цинковых сплавах [976], в сплавах алюминия с торием [977], с кремнием [161], сурьмой и галлием [104], вшлака.ч [182, 350], в нефелиновых концентратах [138], в глиноземистых материалах [108], в горных породах, силикатах, огнеупорах [267,277, [c.72]

    Аналогичный метод применил Мор [9861 при определении алюминия в медных сплавах. Ройтель П109] при анализе цинка и его сплавов использовал для маскировки цианид в сочетании с винной или лимонной кислотой. Если в сплаве присутствует магний, то он осаждается совместно с алюминием, поэтому необходимо определить его содержание и ввести поправку (следы магния во внимание не принимают). Результаты очень точные, если 2п А) < 100. [c.83]

    Метод Тредвелла и Бернаскони использован для определения алюминия в сталях 1136], в магниевых [340, 999] и медных [136, 1192] сплавах, в бокситах. [c.87]

    Чирков [481] предложил метод определения алюминия потенциометрическим некомпенсационным титрованием фторидом, с использованием алюминиевого индикаторного электрода в паре с электродом из нихрома. Оптимальное значение pH 3—7, насыщение раствора хлоридом натрия увеличивает резкость скачка потенциала [311, 412, 481]. Метод Чиркова по сравнению с методом Тредвелла и Бернаскони имеет ряд преимуществ продолжительность титрования меньше и не нужно расходовать этиловый спирт. Метод Чиркова нашел широкое применение в лабораториях. Его используют для определения алюминия в стали [248, 418], в никелевых [95], цинковых [65] и магниевых [65, 66] сплавах, в шлаках [228], в почвах [8] и в других объектах. Исследованию этого метода посвящены работы [151, 202, 311, 312]. [c.87]

    Лучшие результаты могут быть получены при применении быстро реагирующих с алюминием соединений, например, фторида [1118а]. В этом случае ни алюминий, ни фторид не вступают в электродную реакцию. Поэтому для фиксирования эквивалентной точки применяют в качестве индикатора небольшие количества иона Fe (0,5 мл 0, М раствора Fe lg). После превращения всего алюминия в труднорастворимый криолитный комплекс фторид связывает ионы Fe " в комплекс, и диффузионный ток Fe " исчезает, что указывает на конец титрования. Надо вводить поправку на количество-фторида, реагирующего с Fe . Для уменьшения растворимости криолита предлагается титровать в растворе, содержащем 50% этанола. Этот метод использован для определения алюминия в высоколегированных сплавах [493], в медных сплавах [439, 443], в хромитах [52], в глинах и шамотах [441, 442] с применением вращающегося платинового электрода. В работе [52] показано, что конец титрования фиксируется лучше, если в качестве индикатора применять смесь ионов Fe и Си . [c.89]

    Ксиленоловый оранжевый использован для определения алюминия в уране [67], в медных сплавах [261], в нефелиновых концентратах и нефелино-апатитовых рудах [17], в природных пигментах [246]. Казаков и Пушинов 154] определяли алюминий с ксиленоловым оранжевым в присутствии бериллия, маскируя его фторидом. Фторид несколько влияет на оптическую плотность комплекса алюминия, поэтому и в стандартные растворы и в холостую пробу надо вводить одинаковые количества фторида. Молот и др. [266] с помощью ксиленолового оранжевого определяли алюминий и железо при совместном присутствии. Железо определяли при pH 2,6, когда скорость образования комплекса алюминия незначительна. Окрашенное соединение алюминия получали при нагреваиии в течение 15 мин. при 100° С. [c.109]

    С помощью солохромового фиолетового определяют алюминий в стали [739, 1121], ферротитане 778], в сплавах Ре — V, Ре — 2г и Ре — Т [251а], в РЬ — 5п-сплавах [566], в почвах [1], в рудах [257], цинковых покрытиях [257] и др. Предложены методы одновременного определения алюминия и цинка в магниевых сплавах [744], алюминия и магния в горных породах [708]. Предложено полярографическое определение алюминия по окислению его комплекса с солохромовым фиолетовым на вращающемся графитовом пиролитическом электроде [726]. Реагент и алюминий на фоне 0,2 М ацетатного буферного раствора с pH 4,7 дают анодные волны с ./, = + 0,53 б и + 0,87 е, соответственно. По волне комплекса можно определять 25 мкг А1/лл. При pH 4,7 определению алюминия не мешают 20-кратные количества Ag, Аз, Ве, В , Ое, С( , Са, Сг, Си, Hg, и, Mg, Мо, N1, РЬ, Рг, 5Ь, 5п, ТЬ, Т1, и, А /, Тп, 2г, РОГ и растворенного кислорода. Мешают Ре (III), V (V), Т1 (IV), Со, Мп и Р". [c.144]

    Определение с эриохром фиолетовым ВА. Микула и Кодел [969] использовали этот реагент для определения алюминия в титановых сплавах. Определение проводят при pH 4,6, для ускорения образования комплекса растворы нагревают [c.146]

    Для определения алюминия в магнитных сплавах в качестве источника возбуждения можно использовать дугу переменного тока конденсированную и высокочастотную искру. При применении дуги переменного тока рекомендуются следующие условия работы i99a, 387]. [c.150]

    При определении алюминия в магниевых сплавах в качестве источника возбуждения используют конденсированную искру и дугу переменного тока. Постоянным электродом служит пруток из особочистого магния илн спектральночистого угля. Часто используют также парные электроды из анализируемого образца. [c.156]

    Радиометрическое определение алюминия в силлиманитовых рудах и продуктах обогащения с применением Fe и Со [1071 анализ смеси оксихинолинатов А1, Ga и 1п с использованием их инфракрасных спектров [794], определение алюминия в сплавах железа по величине термоэлектрического потенциала [9011, седи-ментометрическое определение алюминия [1035] и термометрическое определение (по изменению температуры анализируемого раствора после прибавления титранта) [1137] используются редко [c.167]

    Наиболее обстоятельное исследование экстракции с помощью диэтилдитиокарбамината натрия проведено Боде [579]. Алюминий не экстрагируется при любых pH оптимальные значения pH для экстрагирования диэтилдитиокарбаминатов многих металлов приведены в монографии Моррисона и Фрейзера [280]. В дополнение к этим данным можно указать, что диэтилдитиокарбаминат марганца довольно хорошо экстрагируется четыреххлористым углеродом из растворов с pH 5,0—5,5 [424, 428, 432]. При pH 4—6 от алюминия могут быть отделены Ре, Мп, 2п, N1, Со, Си, С(1, В1, 5е, Ag, Аз (III), 5Ь(1П).5п(1У),РЬ, Мо. V, 1п, Оа и Т1. Эккерт [697] при определении алюминия в никелевых сплавах успешно удалял никель и примеси Со, Ре, Мп и Си в виде диэтилдитиокарбаминатов. Из различных карбаминатов в данном случае, по мнению Эккерта, диэтилдитиокарбаминат дает наилучшие результаты. При использовании, например, пиперидиндитиокарбамината получаются заниженные результаты (на 10—20%). При отделении больших количеств никеля из органических растворителей лучше всего применять хлорпроизводные углеводородов. Эфиры, высшие спирты и [c.178]

    Методы, основанные на амфотерности алюминия. Алюминий — амфотерный металл—отделяют как от катионов,так иани-онов сорбцией на катионитах в ЫН4-форме из растворов с pH 2,5—3,0. Для его десорбции используют при этом растворы щелочей [222,238, 239, 356, 357]. Лазарев [222] при определении алюминия в сплавах альнико и бронзах раствор пропускает через колонку с СБС в Н" -форме, затем алюминий извлекает 300 мл 1 N раствора МаОН и 50 мл воды со скоростью 3,5 мл1мин. [c.185]

    По данным этих авторов, из 9 М НС1 не сорбируются (Кр< 2) А1. Мп(П), Сг(1П), N1 (II), V (IV), Т1 (III), Т1 (V), ТЬ, Mg, рзэ, Ве и РЬ. Таким образом, из 9 М НС1 от алюминия могут быть отделены почти все металлы, содержащиеся в сплавах Ре, Си, и, 5п и РЬ и мешающие определению алюминия с алюминоном. Возможности разделения расширяются, если раствор пропускать через анионит дважды при различных кислотностях. Так, свинец из 9 М НС1 не сорбируется, но сильно поглощается 2 М НС1. Поэтому Хортон и Томасон [8191 после пропускания раствора 9 М поНС1 через анионит предлагают снизить кислотность элюата до 2 М НС1 и пропустить через другую колонку с анионитом. [c.186]

    Дюбель и Флюршютц [689] определяют алюминий в магнитных сплавах весовым оксихинолиновым методом после удаления мешающих элементов электролизом на ртутном катоде. Метод дает хорошо воспроизводимые результаты. При анализе сплава альнико с —8,8% AI отклонения отдельных, результатов от среднего арифметического составляют 0,01—0,04% Подобный метод использован для микровесового определения алюминия (вес проб 0,02—0,05 г) 18781 [c.210]

    Для определения алюминия в медных сплавах предложены комплексометрические методы с индикаторами ксиленоловым оранжевым [2601, салициловой или суль юсалициловой кислотами [354, 9761. [c.215]


Смотреть страницы где упоминается термин Сплавы определение алюминия: [c.65]    [c.77]    [c.107]    [c.115]    [c.145]    [c.175]   
Люминесцентный анализ неорганических веществ (1966) -- [ c.278 ]

Колориметрический анализ (1951) -- [ c.300 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий в сплавах



© 2025 chem21.info Реклама на сайте