Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Таллий валентность

    В атомах галлия, индия и таллия валентными электронами яв- ляются наружные, но только в возбужденном состоянии — Таким образом, обычно проявляемая этими элементами в соединениях высшая степень окисления равна -ЬЗ. Однако галлий и индий [c.334]

    В случае таллия валентная группа (2, 2) означает Т1—К, валентная К [c.314]

    Аналогичное электронное строение имеют атомы других элементов подгруппы. В возбужденном состоянии атомы этих элементов образуют три ковалентные связи или полностью отдают три валентных электрона, проявляя степень окисления +3. Для таллия характерна также степень окисления - -1. [c.221]


    Обычная валентность галлия и индия равна трем. Таллий дает производные, в которых он трех- и одновалентен. [c.363]

    Главную подгруппу III группы периодической системы составляют бор, алюминий, галлий, индий и таллий. Электронные конфигурации этих элеменюв приведены в табл. 1, все они имеют на последнем энергетическом уровне по три электрона (в нормальном состоянии — два электрона на s-орбитали в один электрон на / -орбитали). Такое распределение электронов обусловливает возможность для указанных элементов проявлять в своих соединениях переменную валентность. [c.329]

    Мы уже отмечали, что среди элементов подгруппы бора исключение представляет таллий. Для него характерна степень окисления -fl, причем, ТЮН является сильным основанием. Это объясняется тем, что для Т1 более прочными оказываются соединения, в которых атом сохраняет электроны на s-орбитали. Поэтому у Т1, как и у следующих за ним элементов 6 периода (см. ниже), валентным становится в первую очередь р-электрон. ]3,ля 1п и тем более для Ga это не характерно. Поэтому Ga+ — очень сильный восстановитель, а Т1 + — сильный [c.91]

    Для всех элементов этой подгруппы (за исключением таллия) характерна степень окисления +3. Для таллия наиболее устойчивой степенью окисления является - -1. Объясняется это тем, что с ростом радиуса элемента увеличивается энергетическое различие 5- и / -электронов, вследствие чего у таллия в первую очередь валентным является / -электрон, а затем уже 5. Гидроксид таллия ТЮН является сильным основанием, потому что Т1+ имеет большой радиус и малый заряд. Соли Т1 + заметно проявляют окислительные свойства, например Т1 ++2Т1=ЗТ1+. [c.78]

    Характеристика элементов подгруппы галлия. Подобно типическим элементам, металлы подгруппы галлия являются 5/7-элементами. Несмотря на то что элементы подгруппы галлия — типовые аналоги, наблюдаются особенности в свойствах отдельных ее представителей. Элемент галлий непосредственно следует за первой десяткой кайносимметричных переходных 3 -металлов, для которых особенно сильна -контракция. Поэтому атомный радиус галлия меньше таковых не только его более тяжелых аналогов, но и алюминия. Вследствие этого ионизационные потенциалы галлия более высокие и связанные с ними энергетические характеристики отличаются от его аналогов. Уже у элементов ИВ-группы заметна тенденция к уменьшению степени окисления сверху вниз, в частности для ртути. Такое понижение положительной степени окисления еще более заметно и подгруппе галлия, В этом в определенной мере проявляется горизонтальная аналогия. Уже для таллия степень окисления +1 более стабильна, чем характеристическая степень окисления +3. Вследствие с1- и особенно /-контракции переход от индия к таллию сопровождается только незначительным увеличением атомного радиуса. В то же время ионизационные потенциалы таллия заметно больше, чем индия. Дело в том, что оба бз -электрона атома таллия подвержены сильному эффекту проникновения через двойной экран и /-электронных облаков. В результате 5-электроны с трудом участвуют в образовании химических связей. Этот факт получил наименование концепции инертной электронной пары. Поэтому у таллия часто валентным является бр-электрон, который, переходя к окислителю, превращает таллий в устойчивый ион Т1(+1). По этой причине производные Т1(+1) почти не проявляют восстановительных свойств и, наоборот, производные Т1(+3) являются сильными окислителями. [c.156]


    Недавно объяснение этого явления было предложено Драго . Сравнивая термодинамические величины для хлоридов элементов групп III Б и IV , он показал, что неустойчивость хлорида таллия (III) и хлорида свинца (IV) может быть объяснена тем, что в данных группах сила ковалентной связи в соединениях элементов с высшими степенями окисления уменьшается по мере увеличения порядкового номера. Драго приписывает это уменьшению перекрывания атомных орбиталей вследствие размещения валентных электронов в большем пространстве и увеличению отталкивания между внутренними электронами в связанных атомах. [c.129]

    К главной подгруппе И1 группы относятся бор, алюминий, галлий, индий и таллий. Наружный энергетический уровень атомов этих элементов имеет конфигурацию ns np, поэтому в возбужденном состоянии валентность их равна 3. [c.259]

    Для элементов других главных подгрупп с релятивистскими эффектами связывается следующее. Как правило элементы 6-го периода этих подгрупп имеют характерные валентности на 2 единицы меньше, чем другие, более легкие, элементы. Так, для таллия, находящегося в третьей подгруппе, характерная степень окисления равна -Ы. Также с релятивизмом связано существование соединений одновалентного висмута. Энергия сцепления атомов между собой в простом веществе (энергия когезии) этих элементов обычно также ниже, чем в других случаях. [c.86]

    В подгруппе бора (валентность центрального атома 3) оксид и гидроксид имеют слабокислый характер (малый радиус) алюминия, галлия, индия — амфотерный характер (средний радиус) таллия — основной (большой радиус). [c.98]

    Из табл. 9 видно, что валентные электроны у алюминия связаны менее прочно, чем у галлия, индия и таллия таллий менее электроположителен, чем алюминий потенциал ионизации атома таллия выше, чем атома алюминия. Бор обнаруживает определенное сходство с кремнием. [c.156]

    Соединения бора с металлами. Бор ни с одним металлом не образует непрерывных твердых растворов. Он совершенно не взаимодействует с металлами подгруппы цинка, индием, таллием, оловом, свинцом и висмутом. С металлическим галлием бор образует эвтектическую смесь. С активными металлами бор дает бориды, образованные в соответствии с правилами валентности, например  [c.145]

    Нетрудно сообразить, что поскольку щелочноземельные металлы Ве, Mg, Са, 8г и Ва очень сходны по своим химическим свойствам, их следует расположить друг под другом, как это и сделано на рис. 7-3. Каждый период завершается элементами с неметаллическими свойствами, и О, 8, 8е и Те образуют семейство элементов с валентностью 2, у которых при переходе от О к Те постепенно нарастают металлические свойства О-типичный неметалл, а Те располагается в особой пограничной зоне таблицы между металлами и неметаллами, где находятся так называемые семиме-таллы ( полуметаллы ), или металлоиды. Элементы К, Р, Аз, 8Ь и В1 образуют семейство, отличительной особенностью элементов в котором является способность присоединять три электрона в некоторых соединениях, а также постепенный переход от неметаллических свойств у N и Р к семиметаллическим у Аз и металлическим у 8Ь и В1, Элементы С, 81, Се, 8п и РЬ также образуют семейство, характерным свойством элементов в котором является валентность 4. Для этих элементов пограничная линия между металлами и неметаллами располагается на один период выше С-типичный неметалл, 81 и Ое-семиметаллы, а 8п и РЬ металлы. Наконец, семейство элементов В, А1, Са, 1п и Т1 образует ионы с зарядами + 3  [c.314]

    Таллий растворяется только в кислотах, превращаясь в катион ТГ. Азотная кислота и царская водка окисляют его до Т1 . Со щелочами не реагирует. Для него более характерна низшая валентность 1+. Гидроокись ТЮН — сильная щелочь. Одновалентность таллия объясняется наличием инертной пары из двух 5-электронов на внешнем (шестом) электронном уровне, как в атоме ртути и в ионах [c.280]

    Индий открыт в 1863 г. Ф. Райхом и Т. Рихтером при спектроскопическом исследовании на содержание таллия цинковой руды из Фрей-берга. Наряду с зеленой линией таллия они обнаружили ярко-голубую линию нового элемента. Название индий было дано по окраске этой линии спектра. До открытия периодического закона индий вследствие того, что он встречается в цинковых рудах, считали аналогом цинка и приписывали ему валентность П. Д. И. Менделеев при создании периодической системы исправил валентность и, соответственно, атомную массу индия и указал, что он — аналог алюминия. [c.281]

    В то время как производные низших валентностей Са и 1п для них не типичны, для таллия наиболее характерны именно те соединения, в которых он одновалентен. Поэтому соли ТР+ имеют заметно выраженные окислительные свойства..  [c.364]

    В связи с этим нами предложена модель, согласно которой в процессе развития цепной реакции в валентной зоне кристалла должны генерироваться квазилокальные дырочные состояния (КЛС). При помещении уровня КЛС на расстоянии 3,2 эВ от вершины валентной зоны в азиде серебра, на расстоянии 3,4 эВ - в азиде таллия и 3,6 эВ в азиде свинца наблюдается отчетливая корреляция положений максимумов люминесценции и пиков плотности состояний [1,3]. [c.87]


    В ряде работ [156] в качестве компонентов каталитического комплекса использовались соединения переходных металлов — аналогов по электронной структуре титана и ванадия гафния, актиния, тантала и тория. Аналогами алюминия являются галлий и таллий. Аналоги титана, ванадия и алюминия должны быть более реакционноспособными, так как энергетические уровни их валентных электронов выше, больше размеры атома и, следовательно, выше их склонность к поляризации. [c.189]

    Из всех осцилляционных эффектов наиболее известен и хорошо изучен эффект де Гааза—ван Альфена (1931 г.). Первые наблюдения эффекта выполнены на висмуте, затем на сурьме и мышьяке (валентность 5), графите и олове (валентность 4), алюминии и таллии (валентность 3), цинке и ртути (валентность 2) и лишь на много позднее были исследованы медь, серебро, золото и щелочные металлы. [c.341]

    В случае таллия валентная груииа (2, 2) означает Т1—Н, валентна  [c.314]

    Элементы бор В, алюминий Л), галлий Оа, индий 1п и таллий Т1 входят в состав П1А групты Периодической системы Д. 11 Менделеева. Строение валентного электронного уровня у атомов этих элементов одинаково — пз пр. Отсюда вытекает характерная для этих элементов степень окисления ( + 111) электроотрицательность элементов невысока. По химическим свойствам бор—неметалл алюминий, галлий и индий — амфотерные элементы, причем при переходе от Л1 к 1п основные свойства усиливаются, таллий проявляет металлические свойства для него более устойчиво состояние Т , чем Т1 ".  [c.199]

    Следует заметить, что для образования связей и проявления степени окисления +3 необходимо участие спаренных электронов, занимающих -орбиталь в атомах этих элементов. Пара электронов 5 устойчива и принимает участие в образовании химических связей лишь у элементов, образующих прочные связи например, у алюминия валентность +3 является преобладающей. Устойчивость одновалентных состояний растет в подгруппе по мере снижения прочности связей, и у таллия известны многочисленные соединения, в которых он одновалентен. Напротив, бор в соединениях всегда трехвалентен образование ковалентных связей в общем случае может доставить энергию, необходимую для того, чтобы перевести электроны атома бора в реакционноспособное возбужденное состояние, отвечающее 5р -гибридизации. Ионизационный потенциал (первый) бора настолько высок (8,29 эВ), что образование одной связи с одновалентным катионом бора не может компенсировать затраты энергии на отрыв электрона. Направление осей гибридных облаков этого типа характеризуется углами 120°, причем все три оси лежат в одной плоскости. Поэтому молекула соединения бора типа ВС1з имеет плоскую структуру. Бор в гидридах формально ведет себя как четырехвалентный элемент. Боран ВНз в свободном состоянии неизвестен и обнаружен только как неустойчивый промежуточный продукт. Но диборан ВгНв исследован детально. Этот гидрид был использован для получения и ряда других боранов. Диборан получают в чистом виде из борогидрида натрия и три-фторида бора  [c.157]

    Имея три электрона на внешней оболочке, элементы подгруппы галлия проявляют валентность 3. Из-за присутствия одного неспаренного электрона они могут быть и одновалентны, причем от галлия к таллию устойчивость трехвалентных соединений уменьшается, а одновалентных увеличивается. Это связано с усилением поляризуюш,его действия трехзарядных ионов (с 18-электронными наружными обо- [c.223]

    Таллий проявляет валентность 1 и 3. В отличие от алюминия у таллия наиболее устойчивые соединения, в которых он одновалентен. Гидроксид ТЮН обладает сильпо щелочными свойствами, Т1(0Н)з не растворим в щелочах, но растворяется в слабых кислотах. Соединения таллия токсичны. [c.160]

    Таким образом, в аква- и гидроксокомплексах Ga + имеет к. ч. 6. Одиако для всех трех элементов существуют комплексы с координационной валентностью и 4, и 6. Ниже приводим примеры некоторых из этих комплексов [GaF ] " (р/С 16,8), [1п(0Н)4) (рК 29,6), fin( H, 00)J - (р/С 18,3), [ТШг,]- (р/С 26,1), [TlBrJ - (р/С 31,6). Для Ga (-ЬЗ), как и А1 (Ч-З), наиболее характерны фторокомплексы, а 1п(-)-3) и Т1 (+3) обладают большим сродством к другим гологенид-ионам. Здесь сказывается размерный фактор увеличение ионных радиусов комплексообразователей в ряду от галлия к таллию. [c.163]

    Существование в Периодической системе вставных d и /-рядов существенно влияет на ионизационные потенциалы и атомные (ионные) радиусы последующих элементов. Особенно велико влияние заполненного 4/1 -слоя, которое называется лантаноидным сжатием (контракцией). Это явление заключается в том, что наличие завершенного 4/14-уровня способствует уменьшению объема атома за счет взаимодействия оболочки с ядром вследствие последовательного возрастания его заряда. Поэтому, наприм(ф, с увеличением атомного номера в ряду лантаноидов происходит неуклонное уменьшение размеров атома. Это же явление объяенж т целый ряд особенностей, характерных для d- и sp-элементов VI периода, следующих за лантаноидами. Так, лантаноидная контракция обусловливает близость атомных радиусов и ионизационных потенциалов, а следовательно, и химических свойств -элементов V и VI периодов (Zr—Hf, Nb—Та, Мо—W и т. д.). Особенно ярко это выражено у элементов-близнецов циркония и гафния, поскольку гафний следует непосредственно за лантаноидами и лантаноидное сжатие компенсирует увеличение атомного радиуса, вызванное появлением дополнительного электронного слоя. Эффект лантаноидной контракции простирается чрезвычайно далеко, оказывая влияние и на свойства sp-элементов VI периода. В частности, для последних характерна особая устойчивость низших степеней окисления Т1+ , РЬ , Bi+з, хотя эти элементы принадлежат, соответственно, к III, IV и V группам. Это объясняется наличием так называемой инертной б52-эле- ктронной пары, не участвующей в образовании связей группировки электронов, устойчивость которой опять-таки обусловлена лантаноидной контракцией. У таллия, свинца и висмута участвуют в образовании связи лишь внешние бр-электроны (Tl[6s 6p ], Pb[6s 6p2], Bi[6s 6p ]). Аналогичное явление актиноидной контракции , по-видимому, также должно наблюдаться, хотя и в меньшей степени. Однако проследить это влияние пока невозможно вследствие малой стабильности трансурановых элементов и незавершенности VII периода. Таким образом, положение металла в Периодической системе и особенности структуры валентной электронной оболочки играют определяющую роль в интерпретации химических и металлохимических свойств элементов. [c.369]

    Общая характеристика. Эти элементы редкие, за исключением алюминия, на долю которого приходится 8,8% массы земной коры (третье место — за кислородом и кремнием). Во внешнем электронном уровне их атомов по три электрона а в возбужденном состоянии Проявляют высшую валентность 111 Э2О3, Э(ОН)з, ЭС1з и т. д. Связи с тремя соседними атомами в соединениях типа ЭХд осуществляются за счет перекрывания трех гибридных облаков поэтому молекулы имеют плоское трехугольное строение, дипольный момент нуль. Из-за того, что в атомах галлия, индия и таллия предпоследний уровень содержит по 18 электронов, алюминия 8 и бора 2, нарушаются закономерные различия некоторых свойств при переходе от алюминия к галлию температур плавления элементарных веществ, радиусов атомов, энтальпий и свободных энергий образования оксидов, свойств гидроксидов и пр. (табл. 23). Таков же характер изменения различий при переходе от магния к цинку. [c.279]

    Ферроцианиды. Нормальный ферроцианид Т14[Ре(СМ)в]- 2НгО мало растворим в воде. Может быть осажден из растворов солей таллия (I) действием ферроцианнда калия. Еще менее растворимы двойные ферроцианиды с тяжелыми металлами, например Tl2 u,4[Fe( N)e]2[56]. Таллий (III) восстанавливается ионами [Fe( N)el Халькогениды. Халькогениды таллия сильно отличаются по свойствам от халькогенидов галлия и индия. Это сравнительно легкоплавкие соединения. Большей устойчивостью отличаются соединения низшей валентности. Из полуторных халькогенидов устойчив при нормальных условиях только теллурид, а TI2S3, возможно, вообще не [c.334]

    При кислотпо-щелочном методе используются свойства aлюм шия и цинка как расположенных параллельно второй диагонали. Так же расположены хром, мышьяк и олово, попадающие вместе с алюминием и цинком в 4-ю rpyrniy по кислотгю-щелочному методу. Влияние второй диагонали заметно и в группе соляной кислоты, так как золото, ртуть, таллий и свинец входят в эту группу в низших валентных состояниях (Д. Купер, 1964). Марганец и сурьма (5-я группа кислотно-щелочного метода) расположены параллельно второй диагонали. Кроме того, гидроокиси марганца (II), железа (II) и (III), сурьмы (III) и висмута (III) имеют общую формулу Н МеОз (5-я группа кислотно-щелочного метода). [c.155]

    Помехой прогрессу следует считать движение по линии наименьшего сопротивления, а именно не всегда осознанный отказ от трактовки свойств макроскопических свойств вещества на базе учения о строении атома вместо этого переходят к попыткам систематизации элементов по группам таблицы Д. И. Менделеева согласно непосредственному сопоставлению и исканию аналогий функциональных макроскопических свойств. Так, прельщаясь плавностью перехода количественных характеристик свойств от Са к 5с, подобной такой же плавности при переходе от Mg к А1, иногда полагают, что в 111 группе главной подгруппой следует считать не серию В, А1, Оа, 1п, Т1, как полагал Д. И. Менделеев, а В, А1, 5с, У, Ьа, Ас. Во П группе главная подгруппа Ве, Mg, Са, 5г, Ва, Ка характеризуется несколько затушеванной вторичной периодичностью (из-за того, что Ва и На стоят перед 4/- и 5/-сериями) в П1 группе обращают неоправданное внимание на повторение этой затушеванности атомы Ьа и Ас также стоят до 4/- и 5/-серий и не подвергались еще лантаноидному и актиноидному сжатию, но в этих атомах присутствуют /-электроны, которых у Ва и На нет. При включении 5с, У, Ьа в одну подгруппу с В и А1 она становится функционально более однородной, так как, например, исчезает Т1, дающий соединения и одновалентного типа, но теряется, однако, конфигурационная однородность в строении атомов Б и А1 характерными являются валентные р-электроны, так же как и у Са, 1п, Т1, а для 5с, У, Ьа существенно присутствие -электронов. Между тем функциональная однородность подгруппы в принципе необязательна достаточно вспомнить для этого такую разнородную по своим основным свойствам подгруппу, как С, 8 , Ое, 5п и РЬ она во многом глубоко напоминает подгруппу В, А1, Са 1п и Т1 свинец, в частности, как и таллий (и по одной и той же вторично-периодической причине), склонен к снижению своей валентности. [c.113]

    Элементы Оа, 1п, Т1 должны были бы иметь по правилу Юм-Розери координационное число <6, но, как известно из теории кристаллических решеток (см. выше), в структурах не может быть осей симметрии пятого порядка или многогранников с пятью тождественными вершинами. Из-за недостатка валентных электронов связь между атомами имеет смешанный характер. В ре-зультате борьбы ковалентной и металлической связей у галлия и индия возникают уродливые структуры, в которых нет ни плотной упаковки атомов, свойственной металлам (с 2 = 12 или 8), ни правильной атомйой структуры (с 2 = 4), свойственной группе элементов с рещеткой алмаза [18]. Таллий имеет сложную ромбическую, а индий — гранецентрированную тетрагональную решетку, плотность упаковки атомов в которой —69%. У таллия преобладает металлическая связь, поэтому [c.61]

    Кремний образует непрерывные твердые растворы только с германием. С металлами IA- и ПА-групп кремний образует силициды, подчиняющиеся правилам формальной валентности. Взаимодействие с sp-металлами, как правило, приводит к образованию эвтектики. В силу неметаллического характера кремния он почти не образует широкие области твердых растворов, хотя температура плавления его высока. Кремний не взаимодействует с цинком, ртзтью, таллием и висмз том. [c.379]


Смотреть страницы где упоминается термин Таллий валентность: [c.326]    [c.274]    [c.104]    [c.443]    [c.219]    [c.400]    [c.65]    [c.72]    [c.163]    [c.213]    [c.280]    [c.364]    [c.519]    [c.275]    [c.338]    [c.200]   
Курс неорганической химии (1963) -- [ c.351 , c.354 , c.356 , c.406 , c.420 ]

Основы общей химии Том 2 (1967) -- [ c.216 ]

Основы общей химии Том 2 Издание 3 (1973) -- [ c.59 , c.63 ]

Курс неорганической химии (1972) -- [ c.314 , c.316 , c.318 , c.363 , c.376 ]




ПОИСК





Смотрите так же термины и статьи:

Таллий



© 2024 chem21.info Реклама на сайте