Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сдвиг эластический

    В литературе описаны различные виды нестабильности течения в процессе вальцевания [18]. Основной причиной разрушения потока в данном случае является накопление эластической энергии в процессе деформации (переработки) полимера, а не только малая величина адгезии эластомера к материалу валков. Скорость накопления избыточной эластической энергии в сажекаучуковой системе определяется соотношением между максимальным временем релаксации соответствующих структурных элементов и скоростью внешнего воздействия (скоростью сдвига). [c.79]


    Пласто-эластические показатели каучуков. В промышленности для оценки технологических свойств каучуков используют различные показатели, такие как пластичность, вязкость по Муни, восстанавливаемость, твердость по Дефо, хладотекучесть, индекс расплава и т. д. Эти показатели определяются для сырых каучуков большинство из них характеризуют величину эффективной вязкости полимеров при различных режимах деформирования и различных скоростях сдвига. [c.80]

    Структурные изменения в пристенном слое существенно отличаются от тех, которые происходят в процессе течения в основной массе струи. Возникающие напряжения могут приводить к периодическому проскальзыванию пристенных слоев, что влечет за собой проявление нестабильности потока. В больщинстве случаев такая нестабильность проявляется по причине 5-6-кратной деформации, развивающейся в результате сдвига, и возникающих при этом нормальных напряжений. Необходимо отметить, что увеличение длины капилляра / ослабляет нестабильность процесса истечения концентрированных растворов и расплавов полимеров. Нарушение установившегося течения и профиля скоростей, которое выражается в искажении формы струи жидкости, вытекающей из капилляра, определяется как эффект эластической турбулентности . Область проявления эластической турбулентности соответствует увеличению эффективной скорости сдвига. Эта область смещается в сторону больших X и у при ослаблении входовых эффектов, при удлинении капилляра, при снижении г эф. [c.182]

    Чисто эластическое деформирование механически полностью обратимо и не связано с разрывом цепи или ползучестью. Однако в реальном каучуке, как и в любом вязкоупругом твердом теле, энергетическое и энтропийное упругое деформирование представляет собой вязкое течение. Отсюда следуют релаксация напряжения при постоянной деформации, ползучесть при постоянной нагрузке и диссипация энергии при динамическом воздействии. Поэтому при моделировании макроскопических механических свойств вязкоупругих твердых тел даже в области деформации, где отсутствует сильная переориентация цепей, следует использовать упругие элементы с демпфированием, содержащие пружины (модуль G) и элементы, учитывающие потери в зависимости от скорости деформирования (демпфер, характеризующийся вязкостью ti). Простейшими моделями служат модель Максвелла с пружиной (G) и демпфером (ti), соединенными последовательно, и Фохта—Кельвина с пружиной (С) и демпфером, соединенными параллельно. В модели Максвелла время релаксации равно t = t]/G, а в модели Фохта—Кельвина то же самое время релаксации более точно называется временем запаздывания. В феноменологической теории вязкоупругости [55] механические свойства твердого тела описываются распределением основных вязко-упругих элементов, характеризуемых в основном временами релаксации т,-. Если известны спектры молекулярных времен релаксации Н(1пт), то с их помощью в принципе можно получить модули вязкоупругости [14Ь, 14d, 55]. Зависимый от времени релаксационный модуль сдвига G t) выражается [c.39]


    В большинстве случаев целью уплотнения является получение агломерата, но иногда оно необходимо для повышения эффективности последующих процессов, например плавления. Уплотнение возникает при приложении внешнего усилия. Эти усилия передаются внутрь системы через контакты между частицами. Благодаря процессам эластической и пластической деформации (деформации сдвига и местных разрушений) число контактов возрастает, и появляются силы, удерживающие частицы вместе. Этот процесс уже рассматривался в разделе, посвященном агломерации. Силы, приложенные извне, приводят к появлению поля внутренних напряжений, которые в свою очередь определяют поведение уплотняемого материала. [c.237]

    Уравнения расчета плоскощелевых головок для производства пленок выводят аналогично уравнениям для расчета листовальных головок. Различие заключается в очень малых размерах выходной щели головки и очень высоких скоростях сдвига, т. е. необходимо учитывать эластическую природу жидкостей и возможность неизотермического течения. Эффекты дробления поверхности экструдата ослабляются при ориентационном растяжении пленки. [c.487]

    Сдвиговые пластомеры (вискозиметры). Пластометры этого типа позволяют испытывать каучуки и резиновые смеси при заданной скорости сдвига образца, находящегося под значительным давлением температуру, скорость сдвига и давление подбирают в соответствии с условиями переработки материала. Наиболее широко распространен прибор Муни, известный под маркой ВР-1 и ВР-2 и применяемый для определения вязкости, эластического восстановления и подвулканизации материалов. [c.35]

    Растворы высокомолекулярных веществ, в которых межмолекулярные связи чрезвычайно непрочны, способны течь, т. е. реагируют даже на очень слабые сдвиговые усилия. Однако если время существования хотя бы части контактов между макромолекулами становится очень большим, образовавшийся студень уже способен противостоять течению вплоть до какого-то определенного значения напряжения сдвига и ведет себя при сдвиговых усилиях ниже этого критического значения, как эластическое твердое тело. Значение критического напряжения сдвига зависит от числа и прочности молекулярных контактов. [c.486]

    При образовании дисперсных структур наиболее близкие к поверхности частичек слои гидратных оболочек (согласно А. В. Думанскому) оказывают пластифицирующее действие, создавая условия для образования обратимых, хотя и неполных, контактов и значительных остаточных, а иногда и быстрых эластических деформаций. С увеличением толщины прослоек дисперсионной среды между частичками дисперсной фазы по местам контактов, например, за счет адсорбирующихся поверхностно-активных веществ или при замене обменного комплекса глинистого минерала на различные катионы, прочность системы на сдвиг понижается, т. е. происходит разжижение и потеря тиксо-тропных свойств, [c.126]

    Эластичность в полимере в отличие от низкомолекулярных жидкостей приводит к постепенному нарастанию напряжений. На рис. 11.9 показано, как нарастают напряжения сдвига в системе, когда в ротационном вискозиметре мгновенно задается определенная скорость вращения цилиндра. В низкомолекулярной жидкости, когда эластические деформации отсутствуют, сразу после включения мотора устанавливается предельное напряжение сдвига (показано пунктиром). В расплаве (или растворе) полимера напряжения возникают постепенно в соответствии с постепенным развитием [c.169]

    При снятии напряжения система возвращается в исходное состояние с уменьшающейся скоростью. Этот процесс замедленной обратимой деформации называется упругим последействием и способность к нему представляет собой свойство эластичности (в отличие от упругости, для которой характерны мгновенные деформации, возникающие и спадающие со скоростью звука). Упругое последействие, характерное для коагуляционных структур связано, как показал Щукин, с взаимной ориентацией анизометричных частиц в направлении сдвига. Быстрая высокоэластическая деформация (т 10 2—10 с) обусловлена поворотом частиц вокруг коагуляционных контактов, медленная (т порядка минут)—пере--мещением этих узлов вдоль поверхности одной из частиц. Эти деформации, в отличие от упругих, имеют энтропийный характер. Ориентация частиц (Д5 < 0) сменяется после разгрузки самопроизвольной дезориентацией и эластическая деформация медленно спадает до нуля в процессе возрастания энтропии (Д5 > 0 Af —TAS < 0). [c.277]

    Зависимость 7 от t представлена графически на рис, XIV.6, б. Кривая постепенно приближается к предельной величине упругой деформации (t/G). При снятии напряжения система возвращается в исходное состояние с уменьшающейся скоростью. Этот процесс замедленной обратимой деформации, характерный для упруговязких твердых тел, называется упругим последействием, и способность к нему представляет собой свойство эластичности (в отличие от упругости, для которой характерны мгновенные деформации, возникающие и спадающие со скоростью звука). Упругое последействие, характерное для коагуляционных структур, связано, как показал Щукин, с взаимной ориентацией анизометричных частиц в направлении сдвига. Быстрая высокоэластическая деформация t X. 10 —10 с) обусловлена поворотом частиц вокруг коагуляционных контактов, медленная t порядка минут)—перемещением этих узлов вдоль поверхности одной из частиц. Изменения свободной энергии системы, связанные с этими деформациями, в отличие от упругих, имеют энтропийный характер. Ориентация частиц (AS < 0) сменяется после разгрузки самопроизвольной дезориентацией, и эластическая деформация медленно спадает до нуля в процессе возрастания энтропии (Д5 > 0 AF K—TAS< 0). [c.298]


    Этот модуль соответствует быстрой эластической деформации, развивающейся после наложения напряжения сдвига Р и исчезающей после разгрузки в суспензиях глин в течение долей секунды. [c.16]

    По мере развития представлений о природе деформационных процессов для характеристики упругих деформаций и высокоэластичного последействия предложены модули быстрой и медленной эластической деформаций [159—161]. При напряжениях сдвига, не превышающих предел текучести, чтобы пространственная структура не испытывала остаточных разрушений, целесообразно различить два деформационных процесса  [c.44]

    Как известно [4], на экспериментальных кривых деформация — время при постоянной нагрузке трудно точно разграничить участки упругой и эластической деформации и, следовательно, определить соответствующие модули. Определение скоростей деформации производится приблизительно по наклону касательной к соответствующему участку кривой. Для четкого разграничения стадий деформирования и определения модулей быстрой и медленной эластических деформаций нами разработано дифференцирующее устройство. При помощи этого устройства одновременно с кривой деформация сдвига — время записывается кривая скорость деформации сдвига — время (рис. 13). Поскольку быстрая эластическая деформация резко отличается временем развития от медленной эластической деформации, то на кривой е = / (т) это выражается резким пиком, четко разграничивающим стадии деформирования. Дифференцирующее устройство построено на принципе пропорцио- [c.49]

    Судя по характеру кривых кинетики развития быстрой и медленной эластической деформации при наложении напряжения сдвига (рис. 45),—это структуры с преобладанием кристаллизационных (фазовых) контактов, мало эластичные, с хрупким характером разрушения. Прочность их невысока, после десяти часов гидратации модуль упругости аналогичных дисперсий СдЗ на порядок выше, хотя на начальном периоде гидратации соотношения обратны. [c.97]

    Следует отметить, что для битума I типа даже при —30° С величина начального модуля сдвига превышает величину равновесного в 5,5 раз, в то время как для битумов II типа эти значения близки, что указывает на наличие эластических свойств битумов I типа в этой температурной области. [c.95]

    Все битумы изменяют реологические состояния при введении добавок типа железных мыл. У битумов И типа с этими добавками появляются эластическое и упруго-пластическое состояния, а интервалы упруго-вязкого и вязкого состояний уменьшаются и сдвигаются в сторону более высоких (по сравнению с исходными битумами) температур, У битумов 1 типа расширяются интервалы эластического и упруго-пластического состояний, а их температурные границы сдвигаются в сторону более высоких температур. [c.215]

    Gj — модуль упругости медленной эластической деформации сдвига, дин/см (или мгс/см ). [c.5]

    Комплексный эластовискозиметр был разработан А. А. Трапезниковым [33]. Прибор позволяет изменять скорость сдвига в 10 раз (при зазоре 0,1 см — от 5-10 до 5-10" с"1) с помощью трех многоступенчатых коробок скоростей через магнитную муфту. Крутильная головка посредством червячной передачи обеспечивает быстрый поворот на большие узлы, ограничиваемые специальным упором, и медленный — на малые углы с точностью до 2. Угловые смещения цилиндров фиксируются визуально или фотоэлементами с помощью шлейфового осциллографа или самопишущего потенциометра. Закручивая внутренний цилиндр через крутильную головку, скорость сдвига можно уменьшить еще на несколько порядков. Для исследований тиксотропии и реопексии прибор имеет передвижной арретир, предназначенный для удержания внутреннего цилиндра и центрирования. Вискозиметр снабжен также игольчатым центратором, который применяется при больших скоростях вращения. Дополнительные устройства позволяют измерять эластические деформации при заданных напряжениях, а также модули сдвига и коэффициенты затухания свободных и вынужденных колебаний при работе маятниковым методом. [c.263]

    На рис. 39 приведены кривые деформации гудрона мангыш-лакской нефти последовательное увеличение нагрузки вызывает мгновенную упругую деформацию, за которой развивается деформация упругого последействия. До критического значения нагрузки кривые однотипны (кривые 1—6). При достижении критического напряжения характер кривой резко меняется (кривая 7), что обусловлено развитием деформации по времени. На основании кинетических данных рассчитываются различные параметры деформации (предельное напряжение сдвига, быстрая, медленная и максимальная эластические деформации, эластичность, пластичность и т. д.). [c.136]

    Если течение не является типичным свойством твердообразных систем, что особенно характерно для конденсационно-кристаллизационных структур, то реологические зависимости строят по отношению к деформации, а не к ее скорости. Типичная кривая зависимости деформации от напряжения для твердых тел показана на рис. VII. 15. Прямолинейный участок кривой ОА отвечает пропорциональности деформации напряжению сдвига в соответствии с законом Гука (VII. 3). До напряжения Ри отвечающего точке А, размер и форма тела восстанавливаются после снятия нагрузки. Важными параметрами такой системы являются модуль упругости (модуль Юнга) и модуль эластической деформации. Считают, что в суспензиях с коагуляционной структурой модуль упругости (модуль быстрой эластической деформации) характеризует твердую фазу дисперсий, а модуль медленной эластической деформации — пространственную сетку с прослойками дисперсионной среды (возможно скольжение частиц относительно друг друга без разрыва связей). Напряжение Р соответствует пределу текучести (правильнее — пределу упругости). С увеличением напряжения проявляется пластичность, а после его снятия — остаточные деформации. При напряжении Рг (точка ) происходит течение твердообразной системы. При дальнейшем увеличении напряжения до величины Рз (точка В), соответствующей пределу прочности, обычно наблюдается нег<оторое упрочнение тела, затем наступает разрушение системы. [c.380]

    Макк [35] изучал механизм деформации битумных дорожных смесей под действием псстоянных нагрузок. Он пришел к заключению, что механические характеристики зависят от характера нагрузок, действующих на дорожное покрытие. Он указывает, что деформация битумных дорожных покрытий состоит из мгновенной и обратимой эластической деформации, за которой следует пластическая деформация, сопровождающаяся твердением. Процесс твердения зависит от вязкости и ускоряется с возрастанием сжимающего давления и продолжительности приложения нагрузок до их определенной величины. Макк считает, что дорожное покрытие в. состоянии отдыха обладает мшшмальжтй потенциальной энергией. Под действием нагрузок частицы, находящиеся в упорядоченном состоянии, редко покидают свое место, в то время как другие частицы перемещаются из состояния неупорядоченного в упорядоченное.. При максимальном значении коэффициента пластического сдвига число частиц в неупорядоченном состоянии приближается к нулю. Изменение свободной энергии активации перехода из неупорядочен-, ного в упорядоченное состояние и масса частиц также максимальны в этой точке. Процесс твердения битумного покрытия можно сравнить со слиянием неупорядоченных частиц в частицы большей, массы. [c.149]

    После расчета величин Р, е , и е для всех нагрузок строятся графики 8о = / (Р), 42 = f (Р) а ё = / (Р). Пользуясь графиками,-по ранее приведенным формулам находят величины модулей сдвига быстрой и медленной з эластической деформации, а также наибольшую пластическую вязкость rii. Условный статический предел текучести Рк, определяется из графика е = / (Р) как отрезок, отсекаемый прямой на оси Р при t]i = onst. При построении графиков [c.199]

    Пусть пружина характеризуется определенным модулем ( , а жидкость в поршне — определенной вязкостью т). В качестве модуля взят модуль сдвига, а не растяжения, поскольку релаксационные явления часто изучают в процессе сдвига. Под действием напряжения а в модели возникнет деформация е = Еэл + ввяяк, состоящая нз двух составляющих — эластической И ВЯЗКОЙ. По закону Гука упругая деформация в пружине [c.120]

    Аномалия вязкости, как уже было показано, является наиболее прямым следствием эластических деформаций. Нарушение способности к сегментальному движению в результате перехода макромолекулярного клубка в упругодеформированное состояние приводит к снижению затрат на внутреннее трение сегментов и к снижению вязкости. Поскольку процесс этот захватывает с ростом скорости сдвига все большее число молекул, вязкость постепенно падает, что характерно для полимеров с широким молекулярно-массовым распределением. [c.169]

    Итак, полимеры в вязкотекучем состоянии являются высоковяз-кими жидкостями, в которых наряду с течением развиваются значительные эластические деформации. Если полимер имеет узкое молекулярно-массовое распределение, то несмотря на проявление эластичности он течет как ньютоновская жидкость. При широком молекулярно-массовом распределении в полимере развивается значительная аномалия вязкости — зависимость вязкости от напряжения и скорости сдвига. При больших напряжениях сдвига развиваются столь значительные эластические деформации, что полимер оказывается упругонапряженным и перестает течь. Если же полимер находится в растворе, то распад узлов флуктуационной сетки и ориентации сегментов достигают некоторого предела, зависящего от природы полимера и концентрации раствора, когда далее с ростом напряжения сдвига надмолекулярная структура больше не меняется и раствор снова течет как ньютоновская жидкость. [c.171]

    Как показано в работе [159], замедленное развитие упругой деформации, т. е. высокоэластическое последействие в коагуляционных структурах,связано с ориентацией анизометричных частиц-пластинок, палочек (или цепочек, образуемых изометричными частицами) в направлении сдвига. Каждому значению деформации сдвига соответствует определенная степень ориентации, монотонно возрастающая с деформацией. При деформировании системы под действием приложенного напряжения проекция размера каждой частицы на направление сдвига увеличивается в среднем на величину эластической деформации. Исходя из представлений об изменении конфигурационной энтропии, вызванной ориенуацией частиц, на основании термодинамических расчетов выражено значение модуля Э1астичности через объемную концентрацию частиц п и абсолютную температуру Т [c.44]

    Благодаря созданию новых реологических приборов И. Г. Гран-ковскому удалось получить полную кривую кинетики структурообразования цементных дисперсий и установить четыре качественно отличающиеся стадии в этом процессе (рис. 21). При рассмотрении наиболее характерной ки/гетики структурообразования тампонаж-ной цементной дисперсии в аспекте деформационных процессов отмечено, что кривые в координатах е = / (т), полученные при постоянном напряжении сдвига, в первой и второй стадиях характеризуются развитием высокоэластических деформаций с большим периодом ретардации (до 10—15 мин). Модули быстрой эластической деформации в этих стадиях имеют порядок 10 —10 дин см , что характерно для коагуляционных структур. К концу второй стадии начинают преобладать кристаллизационные процессы, которые наиболее интенсивно развиваются в третьей стадии, что отражается на кривой увеличением модуля упругости, достигающего к концу третьей стадии 10 дин1см . [c.105]

    Для оценки способности каучука и резиновых смесей к пластическим деформациям необходимо знать не только величину пластичности, но и сопротивление невулканизованного каучука воздействию внешних сил, легкость его деформации под действием сжимающих сил, способность к эластическому восстановлению. Эти свойства каучуков и резиновых смесей, характеризующие их поведение при технологической переработке, принято называть пласто-эластическими свойствами. Существуют различные способы определения пласто-эластических свойств каучука и резиновых смесей путем сжатия образца при постоянной нагрузке или до определенной величины сжатия по величине сопротивления каучука деформации сдвига при вращении диска, помещенного в каучук путем выдавливания каучука (или резиновой смеси) через отверстие и другие способы. [c.91]

    Еще в 30-х годах было показано, что аномально-вязкий характер течения полимерных растворов, так же как и салшх полимеров, связан с наложением на вязкое (необратимое) течение эластических (обратимых) деформаций. Концентрированные растворы полимеров представляют собою упруго-вязкую систему, и изучение их требует разделения обратимых и необратимых деформаций а также исследования зависимости скорости от напряжения сдвига в широком диапазоне заданных величин [c.417]

    II типа. При повышении температуры до 30° С значения модулей сдвига (Go Gm) возрастают, что свидетельствует об уменьшении упругих и быстрорелакснрующих деформаций у этих битумов. Следовательно, в отличие от битумов I и III типа с повышением температуры в данном интервале эластические свойства битумов II типа значительно снижаются. [c.80]

    Модуль быстрой эластической деформации сдвига 1, соответствующий деформации 7 01 практически мгновенно возникающей после наложения нагрузки и столь же быстро исчезающей при разгрузке, может быть рассчитан согласно закону Гука  [c.241]

    Все технологические приемы, ускоряющие протекание релаксационных процессов, снижают усадку К ним относится повышение температуры, снижение скорости сдвига (рис. 5.26), увеличение длины канала при неизмененном расходе, добавление пластификатора. Усадка зависит от структуры полимера с ростом полидиспсрсиости и разветвленности эластическое восста- [c.311]


Смотреть страницы где упоминается термин Сдвиг эластический: [c.194]    [c.77]    [c.125]    [c.223]    [c.39]    [c.465]    [c.155]    [c.215]    [c.194]    [c.170]    [c.271]    [c.79]    [c.96]    [c.8]    [c.335]   
Трение и износ полимеров (1972) -- [ c.131 ]




ПОИСК





Смотрите так же термины и статьи:

Эластическая



© 2025 chem21.info Реклама на сайте