Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимерные продукты волокна

    При уменьшении отбора полимера вследствие останова отдельных прядильных мест или прядильной машины расплав полиэфира в течение всего времени останова сливают через узел гранулирования или через входные штуцеры в блоки прядильной машины. Узел гранулирования может работать непрерывно, пропуская в нормальных условиях до 5% Всего полиэфира, и автоматически увеличивать свою производительность при появлении избытка полимерного продукта. Полученный гранулят направляют для производства полиэфирного волокна неответственных ассортиментов. Поскольку он обычно имеет молекулярную массу несколько более низ- Ую, чем в периодическом процессе, нри котором необходимо учитывать [c.179]


    Терефталевая кислота (, 4-бензендикарбоновая, или п-фтале-вая) легко образует диметиловый эфир, который при взаимодействии с этиленгликолем дает полимерный продукт — полиэтилентере-фталат, используемый при производстве искусственного волокна — лавсана  [c.324]

    Вещества, которые мы сейчас называем полимерами, известны давно. Волокна растительного и животного происхождения (хлопок, пенька, шелк, шерсть), из которых производятся ткани, древесина, используемая с незапамятных времен как топливо и строительный материал, кожа, белковые пищевые вещества и многие другие продукты, играющие важную роль в жизни человека, состоят из природных полимерных материалов. [c.5]

    Полимеры и полимерные материалы бывают как природ-ными соединениями, так и продуктами, полученными из малых молекул путем их соединения. Эти продукты называют синтетическими полимерами. К природным полимерам относятся дерево, хлопок, лубяные волокна, кожа,, мех, шерсть, шелк, каучук и др. Представителями синтетических полимеров являются полиэтилен, полипропилен, полихлорвинил, полистирол, синтетические каучуки и др. [c.372]

    Углеводы в форме крахмала являются важнейшими источниками энергии в пище. Для получения этой энергии мы либо употребляем в пищу зерна, в которых накапливается крахмал, либо скармливаем эти зерна животным, которые синтезируют мясные белки, а затем съедаем их. В любом случае потребляемая нами энергия в конце концов поставляется крахмалом, полимерным продуктом фотосинтеза. Целлюлоза входит в состав хлопка и льна, а также искусственных продуктов - ацетата целлюлозы и вискозного волокна. Дерево, из которого сделана наша мебель, также содержит целлюлозу. Бумага этой книги получена в процессе обработки целлюлозы. Даже деньги давно перестали делать из благородных металлов, заменив их целлюлозой. В этом разделе будет кратко рассмотрено, что представляют собой углеводы и как они используются. [c.308]

    Следует отметить, что в рассмотренном случае прочная структура привитого слоя образована в результате непосредственной полимеризации акрилнитрила — мономера, не растворяющего свой полимер и дающего вследствие этого в обычных случаях полимеризации полимер или в виде порошка, или в виде молекулярного раствора (при проведении полимеризации в растворах). Газофазным методом были получены прочные структуры и при полимеризации ряда других мономеров, с трудом поддающихся полимеризации при других методах инициирования и дающих полимерные продукты лишь крайне низкого молекулярного веса. В качестве примеров на рис. 3 и 4 приведены термомеханические кривые, относящиеся к привитым образцам, полученным при полимеризации фенилацетилена и пропаргилового спирта на полиамидном волокне. [c.547]


    Сущность метода состоит в том, что органические волокна в определенных, строго контролируемых условиях подвергаются термодеструкции. В результате этой обработки отщепляются иные, кроме углерода, атомы (в виде разнообразных соединений), частично выделяются углеродсодержащие соединения и осуществляется переход от органических к углеродным волокнам. В процессе термораспада полимера протекают две группы реакций деструкция, приводящая к образованию различных газообразных и смолоподобных соединений и рекомбинация, в результате которой образуются полимерные продукты, обогащенные углеродом. [c.321]

    Привитые и блоксополимеры на основе В. или поливинилхлорида, в зависимости от природы второго компонента, характеризуются различными свойствами а) негорючестью (полистирол, поли-метилметакрилат, триаллилфосфат) б) высокими физи-ко-мехапич. свойствами (простые или сложные аллиловые или метакриловые эфиры, напр, диалкилфталат, диаллилмалеинат, триаллилцианурат) в) повышенной растворимостью в органич. растворителях, что особенно важно при формовании из сополимеров пленок и волокон (акриламиды) г) высокой гибкостью и эластичностью (полиакрилаты) д) высокой ударной вязкостью и низким водопоглощением (каучуки) е) высокой адгезией (пиперилен, бутадиен, изопрен, акрилонитрил, бу-тилакрплат). Волокна с хорошей накрашиваемостью получают при полимеризации 4-винилпиридина в р-ре сополимера В. с винилацетатом в метилэтилкетоне при 70 °С. Прививкой прризводных акролеина или моноокиси бутадиена на поливинилхлорид или статистич. сополимеры В. в среде кетонов, ароматич или галогенсодержащих углеводородов получены привитые сополимеры, обладающие клеющими свойствами. Выпуск сонолпморов на основе В., в тем числе и с винилиденхлоридом (см. Винилиденхлорида сополимеры), составляет 4—7% от общего количества выпускаемых полимерных продуктов на основе В., включая и поливинилхлорид (см. Винилхлорида полимеры). Наблюдается тенденция к постоянному увеличению производства сополимеров винилхлорида. [c.228]

    Качество больщой части химических продуктов (кислот, щелочей, солей, минеральных удобрений, гербицидов) определяется содержанием полезного или основного вещества, концентрацией, предельно допустимым содержанием посторонних примесей, индексом расплава и др. Для оценки качества синтетических полимерных материалов, искусственного волокна используются физико-механические показатели вязкость, пластичность, истираемость, относительное и остаточное удлинение, термостабильность. В ряде подотраслей применяются и специфические показатели, например светоотдача в производстве светосоставов, укрывистость в лакокрасочной промыщленности вкус, запах, цвет в масложировой промыщленности. Для оценки качества изделий используются также различные показатели, например срок службы, пробег, ходимость в производстве щин и др. [c.113]

    Производства азотное, полимерных материалов, продуктов органического синтеза, основной химии — расходуют более 70% электрической и более 80% тепловой энергии, потребляемых химической промышленностью. Наиболее энергоемкими из химических продуктов являются аммиак, аммиачная селитра, азотная кислота, желтый фосфор, синтетический каучук, химические волокна, пластмассы и некоторые другие. [c.303]

    В соответствии с этим определением одна важная группа продуктов — полиолефины (главным образом полиэтилен) — должна быть исключена из категории нефтехимических продуктов вследствие полимерного характера таких материалов. Тем не менее в данной главе полиолефины рассматриваются как материалы, входящие в группу нефтехимических продуктов. Следует отметить также, что приведенное определение исключает из категории нефтехимических продуктов все текстильные волокна, как нейлон и ацетилцеллюлоза, все пластмассы, каучуки, топлива и любые готовые изделия. Однако оно требует включения всех химических веществ, используемых как полупродукты или мономеры для производства перечисленных материалов, например нейлоновую соль (гексаметиленадипамид), уксусный ангидрид, бутадиен, стирол, тетраэтилсвинец и многочисленные растворители, применяемые в лакокрасочной промышленности. [c.6]

    Сканирующей электронной микроскопией можно пользоваться для изучения морфологии полимеров, сополимеров, блок-сополимеров, смесей полимеров исследования микроструктуры двухфазных полимеров, полимерных сеток, шероховатых и разрушенных поверхностей, клеев и особенно поверхностей, образующихся при разрушении клеевого шва наполненных и армированных волокнами пластиков органических покрытий (дисперсий пигментов, текучести связующих и их адгезии к пигментам и субстратам, выветривания из-за покрытия продуктами гниения, меления, образования пузырей или растрескивания, а также набухания окрашенных пленок в воде) пенопластов, определения качества пластиков, получающихся экструзией или прессованием. [c.113]


    Окрашивание волокнистых и других материалов может основываться 1) на химической реакции между красителем и функциональными группами полимера 2) на связывании красителя с полимером посредством адсорбционных сил 3) на способности красителей растворяться, диспергироваться или механически распределяться в полимерных и других материалах 4) на образовании красителей из промежуточных продуктов непосредственно в волокне или других материалах 5) на закреплении красителя или пигмента на полимерном материале с помощью специальных связующих веществ. [c.39]

    Азот-, фосфор- или кислородсодержащие органические соединения, например акрилонитрил, метакрил онитрил, винил пиридин и его производные, акриловые и метакриловые эфиры, винилизобутиловый эфир, винилацетат, меркаптобензорь ная кислота образуют при взаимодействии с БК при инициировании органическими пероксидами привитые сополимеры, которые можно использовать как адгезивы и клеи для крепления БК с натуральными и синтетическими волокнами, металлами, различными эластомерами. Сообщается о модификации Б К при взаимодействии с ангидридами органических кислот и альдегадами, а также по реакциям карбоксилирования, окисления, эпоксидирования [18]. Практическое использование этих полимерных продуктов пока ограничено. Большой интерес представляют смеси БК и его галогенпроизводных с другими эластомерами. [c.283]

    Изучен качественный и количественный составы летучих продуктов термоокислительного разложения и горения ряда термостойких полимерных материалов при 300, 600 и 850 С в атмосфере воздуха методом газовой хроматографии. Исследованы следующие полимерные материалы волокно на основе отечественного ароматического полиамида (фенилон), полиоксадиазольное волокно, бромированное полиоксадиазольное волокно, пленка на основе полиэтилентерефталата, стеклотекстолит на полиимидном связующем сетчатого и линейного строения, стеклотекстолит на фосфоракрилатном связующем. Табл. 1. Библ. 6 назв. [c.125]

    Асбест. Волокнистая структура, а также способность после определенной обработки химически взаимодействовать с некоторыми полимерными продуктами делают айбест особенно ценным для использования в качестве добавки в термостойкие материалы. Асбест по своему химическому строению [24] — типичный неорганический полимер. Уже при 110°С он частично теряет содержащуюся в нем воду, вследствие чего его прочность, гибкость и эластичность понижаются примерно на 10—15%. При нагреве до более высоких температур происходит дальнейшая потеря воды и снова понижение указанных свойств волокон. Но после выдержки на воздухе в течение 3—5 сут волокна полностью возмещают потерянную влагу, поглощая ее из окружающего воздуха, и восстанавливают прочность, упругость и эластичность. Твердость асбеста (по Моосу) 2—2,5, плотность 2500 кг/м . [c.40]

    Исследование механических свойств полимерных материалов и сопоставление их со структурой полимеров показало, что большое влияние на прочность оказывают регулярность структуры и характер надмолекулярных образований. При получении полимеров из диенов большое влияние на прочность оказывает, например, соотношение и регулярность расположения в цепных молекулах звеньев, соединенных в положениях 1—2 и 1—4. Для таких полимеров, как полипропилен, большое значение имеет расположение заместителей в основной цепи. Это вполне понятно, так как от регулярности расположение заместителей зависит степень кристалличности продукта. Соотношение изотактической, синдиотак-тической и атактической фракций в полимерном продукте иногда оказывает даже более сильное влияние на прочность материала, чем изменение химического состава. Так, например, из изотакти-ческого полипропилена можно получать волокна, характеризующиеся разрушающим напряжением свыше 70 кгс1мм , в то время как атактический полипропилен вовсе не обладает волокнообразующими свойствами. [c.183]

    Лавсановое волокно может производиться как периодическим, так и непрерывным способом. К достоинствам непрерывного метода следует отнести отсутствие отдельных операций формования и сушки полимерной крошки. Это упрощает конструкцию прядильной машины, облегчает автоматизацию технологического процесса и позволяет получать более однородный по качеству продукт. На рис. 19.7 представлена технологическая схема узла полимеризгщии ДЭГТ и формования лавсанового волокна из ПЭТФ. [c.421]

    На нефтеперерабатывающих предприятиях наряду с нефтепродуктами вырабатывают продукты нефтехимии (полимерные матгриалы и пластические массы, синтетические волокна, моющие средства, спирты, альдегиды и др.), которые находят широкое применение во всех отраслях народного хозяйства, Пс-полэзование полимерных материалов в значительной степени опр(2деляет технический прогресс в автомобильной, авиационной, судостроительной, электротехнической и других отраслях промышленности. Применение пластмасс позволяет заменить сотни тысяч тонн металла, сократить производственные площади, уменьшить потребность в инстру.менте и оснастке, сократить число технологических операций и снизить их трудоемкость. [c.9]

    Продукты нефтехимии полимерные материалы и пластические массы, синтетические волокна, каучук, моющие средства, спирты, альдегиды и многие другие — с успехом применяются в ра )личпых отраслях народного хозяйства. Так, использование полимерных материалов в значительной степени определяет технический прогресс в автомобильной, авиационной, электротехнической промышленности и др. Автомобильная промышленность, например, превратилась в крупного потребителя пластмасс, искусственного и синтетического волокон, синтетического каучука и резины, лаков и красок. Применение пластмасс дает возможность заменить сотни тысяч тонн металла, сократить производственные площади, уменьшить потребность в инструменте и оснастке, позволяет в 3— 5 раз облегчить вес деталей. При этом значительно сокращается количество технологических операций и их трудоемкость, в результате чего себестоимость продукции резко снижается. [c.12]

    Углеродные волокна (УВ), шнуры, войлоки, пряжа, вата — это продукты пиролиза полимерных волокон и волокнистых материалов и их послецующей высокотемпературной обработки. [c.564]

    Все синтетические материалы можно условно подразделить на жидкие полимеры, полимерные волокна, синтетические смолы, твердые полимеры и упругие резиноподобные пластики. Условность этого подразделения состоит в том, что в зависимости от обработки один и тот же полимерный материал можно получить в разном виде (например, найлон и капрон могут быть получены и в виде волокон и в виде компактных материалов) вместе с тем из одного и того же сырья, но при разных технологических режимах можно получать разные классы синтетических продуктов (так, при вулканизации каучука, в зависимости от числа мостиковых связе между цепями через атомы серы, по.аучают либо резину, либо эбонит). [c.127]

    При этом частично протекают реакции сшивания полимера, что вместе с образованием продуктов конденсации в полимерной матрице ведет к росту прочности, например, сырых резиновых смесей и вулканизатов или увеличению прочности связи модифицированного неполярного полимера с полярными волокнами. Последнее крайне важно для устойчивой и длительной эксплуатации полимертекстильных композиционных материалов (шины, транспортерные ленты, ремни, рукава и другие изделия). Это направление модификации полимеров разработано в СССР в содружестве вузов с промышленностью и в настоящее время широко используется, в частности, для модификации композиций на основе синтетических эластомеров (модификаторы РУ-1, АРУ, алрафор и др.), часть из которых запатентована в развитых капиталистических странах. [c.288]

    Na-KMЦ в качество добавки к моющим средствам, показал, что это г продукт значительно улучшает их дгоющие свойства. Указанное обстоятельство в работе [1321 объясняется адсорбцией Na-KMЦ на целлюлозных волокнах, происходящей в довольно значительных разлгерах. Обладая отрицательным зарядом полимерного иона, карбоксиметилцеллюлоза при адсорбции на волокне значительно увеличивает слабый отрицательный заряд целлюлозы. В то же время большая часть грязевых частиц в моющих растворах (при pH около 7) имеет также отрицательный заряд. Поэтому адсорбция Na-KMЦ на волокнах увеличивает электростатическое отталкивание между волокнами и частицами грязи, которые уже удалены с волокон. [c.126]

    С каждым годом возрастает производство синтетических полимеров, т. е. высокомолекулярных соединений, получаемых из низкомолекулярных исходных продуктов. Быстро развиваются такие отрасли промышленности, как промышленность пластических масс, синтетических волокон, синтетического каучука, лаков (лакокрасочная промышленность) и клеев, электроизоляционных материалов и др. Промышленность пластических масс располагает в настоящее время большим количеством синтетических полимерных материалов с разнообразными свойствами. Некоторые из них превосходят по химической стойкости золото и платину, сохраняют свои механические свойства при охлаждении до —50 °С и при нагревании до +500 "С. Другие не уступают по прочности металлам, а по твердости приближаются к алмазу. Из синтетических полимеров получают исключительно легкие и прочные строительные материалы, прекрасную электроизоляцию, незаменимые по своим свойствам материалы для химической аппаратуры. Резиновая промышленность располагает теперь материалами, превосходящими по многим показателям натуральный каучук, одни материалы, например, газонепроницаемы, стойки к бензину и маслам, другие не теряют эластических свойств при температуре от —80 до -f300° . Новые синтетические волокна во много раз прочнее природных, из них получаются красивые, несминаемые ткани, прекрасные искусственные меха. Технические ткани из синтетических волокон пригодны для фильтрования кислот и щелочей. [c.19]

    НАПОЛНИТЕЛИ полимерных материалов, применяют д ля облегчения переработки полимеров и (или) улучшения эксплуатац. св-в изделий, а также снижения их стоимости. Наиб, распространеипые Н.— высокодисперсные тв. продукты, напр, сажа, ЗгОг, графит, мел, тальк, каолин, слюда. Использ. также стеклянные, асбестовые и хим. волокна, монокристаллич. волокна нек-рых металлов (- усы ), листовые материалы (ткани, бумага). Н., улучшающие эксплуатац. св-ва изделий, наз. активными (усиливающими, упрочняющими) волокнистые и листовые Н. обычно наз. арми-pyющи пl. Высокодисперсные Н. совмещают с полимером в смесителях или на иальцях, листовые Н. пропитывают р-ром или расплавом полимера на спец. машинах. Наполненные материалы перерабатывают в изделия прессованием, литьем под давл. и др. методами. Кол-во Н. в материале может изменяться в широких пределах в высоконаполненных композициях оно иногда превышает содержание полимера. [c.359]

    Некоторые полимеры при пиролизе не образуют характеристических соединений, преобладающих по количественному содержанию (полиэтилен и этиленпропиленовые сополимеры, полиуретаны на основе простых эфиров, полисилоксаны). Однако в продуктах пиролиза большинства полимеров, в том числе и каучуков общего назначения, выявлены индивидуальные соединения, позволяющие осуществлять их идентификацию как в товарных полимерах, так и в материалах сложного состава, содержащих наряду с полимерами другие органические и неорганические компоненты (в резиновых смесях, найозтенных и ненаполненных вулканизатах, клеевых композициях, полимерных покрытиях и пленках, синтетических волокнах и т.п.). Использование индивидуальных характеристических продуктов пиро- [c.72]

    Особые свойства поливнниленов, такие, как окраска, полупроводниковые свойства, теплостойкость и т. д., объясняются наличием в -иакромолекуле системы сопряженных связей с делокализован-ными электронами, способными перемещаться по полимерной цепи. Термостойкий продукт, образующийся в результате многочасового нагревания полиакрилонитрила при 200° С и не загорающийся при длительном действии бунзеновской горелки — черный орлон или углеродное волокно [c.612]

    Области применения красителей довольно разнообразны ими окрашивают волокна, меха, кожу, древесииу, бумагу, некоторые пищевые продукты, анодированный алюминий, микроскопические препараты, полимерные материалы, мыла, воски, типографские печатные составы, чернила и пишущие пасты, ленты для пишущих машин. Красители используются также в светокопировании, фотографировании и изготовлении пигментов, а в химической лаборатории — в качестве разнообразных индикаторов. [c.563]

    Комплексное применение совокупности новых препаративных методов ЭМ исследования полимеров (механическая и ультразвуковая диспергация, контрастирование продуктов дробления, использование метода реплик, ультратонких срезов, отражательной и сканирующей электронной микроскопии и т. п.) создали условия для выяснения характера НМС целлюлозы [6, 7]. Оказалось, что если диспергировать в жидкости пеболь-щую навеску волокна, то удается наблюдать распад исходного волокна на удлиненные образования, так как при дроблении полимер разрушается в первую очередь по границам структурных образований. Поперечные размеры продуктов дробления заключены в достаточно широком интервале (рис. П.1,с). Малоконтрастность снимков, не позволяющая обнаружить никаких более тонких деталей, обусловлена тем, что полимерные объекты состоят из слаборассеивающих элементов (в основном углерода), а соседние области мало различаются по толщине. Поэтому препараты для прямого исследования необходимо контрастировать , создавая неравномерное распределение посторонних веществ, содержащих тяжелые атомы. Для этой цели применяют методы косого напыления металлов в вакууме негативного контрастирования, а также пропитку за счет диффузии паров 0з04 или иода [8, гл. 9]. [c.87]

    Начиная с гл. 8 основное внимание переключается с процессов получения тех или иных химических продуктов на сами эти продукты. В гл. 8 и 9 рассматриваются полимерные материалы (пластмассы и химические волокна), а в следующих главах красители, фармацевтические препараты, органические химикаты для сельского хозяйства и моющие средства. Далее обсуждаются органические продукты, с которыми студент уже встречался в тт. 1—4. К гл. 14 описаны топлива и взрывчатые вещества, а в гл. 15 и 16 — разнообразные химикаты, получаемые из природного сырья, а именно пищевые, вкусовые и душистые вещества. Наконец, в гл. 17 кратко рассмотрены органические соединения, применяемые в фотографии, и фторуглеводо-роды, которые используют как пропелленты для аэрозолей и хладоагенты. [c.10]


Смотреть страницы где упоминается термин Полимерные продукты волокна: [c.19]    [c.353]    [c.301]    [c.84]    [c.389]    [c.316]    [c.323]    [c.31]    [c.359]    [c.461]    [c.266]    [c.23]    [c.6]    [c.332]   
Технология органического синтеза (1987) -- [ c.386 ]




ПОИСК





Смотрите так же термины и статьи:

Полимерные продукты



© 2024 chem21.info Реклама на сайте