Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод 5. Другие способы инициирования

    Метод 5. Другие способы инициирования [c.69]

    Для устранения ингибирующего влияния кислорода воздуха в реакциях фотополимеризации ирименяются общепринятые методы, как и при других способах инициирования полимеризации ненасыщенных олигоэфиров введение всплывающих добавок [3,92]. проведение отверждения в инертной среде [117]. применение ускоряющих добавок [118-120], под действие.м которых происходит распад инициатора с образованием свободных радикалов. Последний способ является наиболее перспективным. [c.110]


    Электропроводящие полимерные пленки наносят на поверхность электрода осаждением из раствора соответствующего мономера с последующей его полимеризацией под действием тлеющего разряда, радиации или света. Такие пленки можно получить и при электрохимическом инициировании полимеризации. В частности, при электрополимеризации пиррола в присутствии порфиринов, фталоцианинов и других реагентов получают пленки, содержащие эти модификаторы. Электрохимическая полимеризация имеет ряд преимуществ перед химической. Во-первых, продуктом реакции являются пленки, локализованные уже на поверхности электрода и имеющие хорошую электропроводность. Другое достоинство метода - высокая стехиометрия процесса, позволяющая получать достаточно чистые полимеры. И наконец, свойства полимерного покрытия легко контролировать в процессе его получения. В зависимости от условий осаждения мономера, состава раствора и способа инициирования можно в широких пределах изменять электропроводящие свойства полимерных пленок и их проницаемость по отношению к различным ионам. [c.482]

    Эти реакции являются основой многих удачных методов получения хлорпроизводных насыщенных углеводородов или продуктов присоединения хлора к ненасыщенным углеводородам. В этих препаративных методах часто используется фотохимическое инициирование, позволяющее получить достаточные скорости при низких температурах, при которых продукты реакции устойчивы. В других способах получения в качестве катализаторов используют такие переносчики галогенов , как хлорное железо или иод, однако не всегда ясно, приводит ли их действие к гомолитическому разрыву молекулы хлора. Реакции хлора с водородом и окисью углерода представляют типичные примеры катализа и ингибирования неразветвленных цепных реакций. [c.366]

    Здесь, естественно, мы не упоминаем обо всех методах инициирования реакций. В отдельных работах конкретные условия могут привести к тому, что наиболее целесообразными окажутся какие-либо другие способы, как например при измерении энтальпии фторирования кристаллического кремния (см. стр. 148). [c.162]

    Очевидно, что этот путь анализа неприменим, если происходит передача цепи на мономер. Другой способ заключается в том, что с помощью специальных физических или химических методов определяют концентрацию остатков инициатора в полимере. При быстром инициировании доля инициатора в полимере в течение процеоса должна уменьщаться за счет увеличения массы полимера. При медленном инициировании доля инициатора в полимере должна оставаться постоянной. Иногда проще определять концентрацию инициатора в растворе. Тогда быстрому инициированию будет, соответствовать быстрое исчерпание инициатора. [c.61]


    Известны различные классификации процессов хлорирования углеводородов более часто хлорирование идентифицируют по способу инициирования — термическое, каталитическое, радиационное. Однако, судя по последним исследованиям, механизмы термического и каталитического процессов довольно сходны, в термическом процессе в объеме роль катализатора отводится стенке. Ввиду этого целесообразно рассмотреть процессы хлорирования — важнейшие методы переработки углеводородов и других органических соединений — в зависимости от способа их проведения в объеме газовой фазы, на катализаторе и в жидкой фазе. [c.28]

    С этой точки зрения следует различать термическое, каталитическое и радиационное (фотохимическое или с применением других источников радиации) хлорирование. Наиболее простым способом инициирования реакции хлорирования является термический распад молекулярного хлора на атомы, и поэтому термическое хлорирование оказалось наиболее изученным и часто применяющимся на практике методом хлорирования парафиновых углеводородов. Наибольшее количество известных экспериментальных работ в области хлорирования посвящено вопросам термического хлорирования и частично уже обобщено в литературе [51—53]. [c.32]

    Этот метод основан на том, что после мгновенного прекращения фотохимического инициирования цепей в реакциях окисления в течение некоторого времени наблюдается уменьшение концентрации перекисных радикалов до величины, соответствующей темновой реакции, что можно регистрировать по уменьшению интенсивности хемилюминесценции. Хемилюминесцентный метод фотохимического последействия отличается от рассмотрен-ного выше метода фотохимического последействия лишь способом измерения скорости реакции в период установления нового стационарного состояния по концентрации перекисных радикалов—в одном случае измеряется скорость поглощения кислорода, в другом [c.307]

    Как уже говорилось, реакции Дильса — Альдера протекают быстро, и для их осуществления разработаны удобные методики. Резко отличается от этого внешне схожая димеризация олефинов, приводящая к циклобутанам (реакция 15-48) эта реакция, за исключением случаев фотохимического инициирования, дает очень плохие результаты. Фукуи, Вудвард и Гоффман показали, что такие резко контрастирующие результаты можно объяснить с помощью принципа сохранения орбитальной симметрии [673], согласно которому одни реакции оказываются разрешенными, а другие — запрещенными. Правила орбитальной симметрии (называемые также правилами Вудварда— Гоффмана) применимы только к согласованным реакциям, например к механизму а, и основываются на принципе, согласно которому реакции идут таким образом, чтобы в течение всего процесса поддерживалось максимальное связывание. Известен ряд способов применения принципа сохранения орбитальной симметрии к реакциям циклоприсоединения, три из которых используются чаще всего [674]. Мы рассмотрим здесь лишь два — метод граничных орбиталей и метод Мёбиуса — Хюккеля. Третий метод, называемый методом корреляционных диаграмм [675], менее удобен для применения, чем указанные два других. [c.244]

    Во-вторых, следует отметить весьма большое число ступеней, ведущих к рассеянию энергии возбуждения, вследствие чего эффективность ядерного излучения как метода разрыва химических связей оказывается сравнительно низкой. Действительно, оказывается, что на каждые 100 эв (1 эв = 23 ккал/ моль) поглощенной энергии образуются около семи реакционноспособных форм (ионов или радикалов). Другими словами, для образования одной реакционноспособной формы расходуется примерно 13—15 эв, хотя в действительности для образования свободных радикалов из углеводородов требуется всего 4 эв. Если новые активные формы молекулы, которые могут быть получены радиационными методами (RH, RH" ), удается использовать для инициирования новых реакций, представляющих особый интерес, то этот недостаток не является сколько-нибудь существенным. Однако поскольку речь идет о реакциях радиационной химии, связанных с образованием свободных радикалов гиг, ядерное излучение оказывается малоэффективным и сравнительно дорогим способом проведения таких реакций. Следовательно, к этому методу можно прибегать лишь в специальных случаях, в которых он дает особые преимущества по сравнению с термическими или химическими способами образования свободных радикалов. [c.117]

    С соответствующими инициаторами. В качестве инициаторов может служить целый ряд веществ. Пожалуй, чаще всего применяются перекиси, особенно ацилперекиси, например перекись бензоила. В более ранних работах широко использовалась распространенная в природе эндо-перекись, аскаридол, но в настоящее время она вытеснена другими перекисями. Реакцию можно также инициировать фотохимически ультрафиолетовым светом с длиной волны ниже 2900 А или светом большей длины волны, но в сочетании с такими фотосенсибилизаторами, как карбонильные соединения [59] или металл-алкилы [60]. Инициирование ультрафиолетовыми лучами особенно удобно для реакций, протекающих при низкой температуре, например для низкокипящих олефинов, или в тех случаях, когда стремятся осуществить стереоспецифическое присоединение. а-Галогенкетоны могут инициировать реакцию даже в темноте [131, и имеются данные о том, что мелкодисперсные металлы, такие, как железо, кобальт и никель, являются эффективными инициаторами [16, 61]. Для инициирования реакций в паровой фазе применялись также тихие электрические разряды [14], но этот способ, по-видимому, не может считаться удобным препаративным методом. [c.181]


    Радиационное хлорирование ароматических соединений и других веществ вновь было подвергнуто исследованию в последние годы ввиду возможного промышленного использования этого процесса. Инициирование при помощи ионизирующих излучений имеет ряд преимуществ по сравнению с фотохимическим методом (см. стр. 312). При одинаковых экспериментальных условиях оба указанных метода дают идентичные продукты, отличающиеся, однако, от тех, которые получают термическим способом С 134]. Результаты, полученные при хлорировании толуола с использованием различных методов инициирования процесса, приведены в табл. 38. [c.166]

    Полимеризация имеет цепной радикальный характер и проходит под действием света, тепла, перекисей и других факторов, инициирующих рост свободных радикалов. Чисто термическая полимеризация протекает очень медленно, и этот способ применяют редко. Обычно полимеризацию проводят в присутствии инициаторов — перекиси бензоила и водорастворенных перекисей. Применяются три основных метода инициированной полимеризации эфиров блочный, водоэмульсионный и в растворителях. [c.129]

    Под действием ультрафиолетового излучения отверждение покрытий на основе различных полиэфирных лаков происходило в течение 10-15 мин при малой величине внутренних напряжений в покрытиях (десятые доли мегапаскаля), т.е. меньших, чем при конвективном способе. Особенно эффективным этот метод оказался для лаков холодного отверждения, характеризующихся сравнительно низкой адгезионной прочностью. При отверждении под действием ультрафиолетового облучения наблюдается улучшение адгезионных и других физико-механических свойств покрытий. Методом ИКС установлено, что при таком способе отверждения покрытий продолжительность расходования двойных связей стирола и ненасыщенного олигоэфира сокращается до 10-15 мин. Причина этого явления обусловлена, вероятно, селективным распределением энергии и дополнительны.м инициированием полимеризации ультрафиолетовым излучением, приводящим к увеличению числа свободных радикалов. Полиэфирные покрытия характеризуются высокой степенью проницаемости к ультрафиолетовому излучению-до 8 мм [114, 158]. Способ отверждения полиэфирных покрытий оказывает значительное влияние на надмолекулярную структуру покрытий и однородность ее по толщине пленки (рис. 5.2). При конвективном способе отверждения покрытий в них возникает неоднородная по толщине пленки структура. В результате адсорбционного взаимодействия ассоциированных макромолекул с поверхностью подложки в этих слоях наблюдается резкое торможение релаксационных нроцессов при формировании покрытий. В связи с этим в слоях, граничащих с подложкой, фиксируются в процессе отверждения структурные элементы, характерные для исходных ассоциированных полиэфирных композиций. По мере удаления от подложки наблюдаются агрегация структурных элементов и формирование более сложных надмолекулярных образований, неравномерно распределенных в системе. Особенно неоднородная структура образуется в поверхностных слоях. [c.136]

    Наиболее известен и шире всего распространен способ радикальной (инициированной) полимеризации. Все материалы, полученные этим способом, например полиэтилен, полипропилен, поливинилхло-рид, термопластичны. Полимеризация предполагает объединение мономеров, которые соединяются друг с другом при нагревании или воздействии катализатора за счет раскрытия имеющихся в мономерах двойных связей. Возникающие во время экзотермически протекающей реакции реак-ционноспособные радикалы объединяются преимущественно в цепные макромолекулы. Побочных продуктов при этом не образуется. Элементный состав полимера определяется участвующими в строении мономерами. Метод полимеризации предоставляет технологам возможность изменять свойства высокомолекулярных материалов путем воздействия на протекание процесса полимеризации. Для полимеризации характерны три фазы. В первой протекает реакция инициирования. При достаточном воздействии энергии и (или) катализатора образуется большое количество реакционноспособных молекул мономера, из которых во второй фазе реакции должна возникнуть цепь соответствующей длины. От длины цепи, т. е. степени полимеризации (число отдельных молекул мономера, соединенных в одну цепь) существенно зависят свойства материала. По этим данным можно рассчитать молекулярную массу, которая часто используется для характеристики полимерных материалов. [c.77]

    Из всех известных методов полимеризации главное применение в технике получили методы, основанные на внесении инициаторов и катализаторов, а также методы чисто термической полимеризации. Другие способы инициирования процессов полимеризации (действие света, электрических разрядов, ультразвука и др.) не нашли пока значительного технического примене1ния. [c.160]

    В таких реакциях присоединение обычно происходит в направлении, обратном правилу Марковникова, т. е. отрицательная часть адденда оказывается связанной с атомом углерода, который соединен с большим числом атомов водорода. Этот так называемый перекисный эффект , связанный с наличием радикального цепного механизма, был открыт независимо, с одной стороны, Хеем и Уотерсом [374] и, с другой стороны, Карашем, Энгельмапом и Мейо [375]. Несмотря на различные способы инициирования, реакции, вызываемые перекисью и излучением, характеризуются, по-видимому, сходными механизмами, хотя их скорости значительно изменяются в зависимости от при.меняемого метода инициирования. В этом разделе рассматриваются лишь реакции, при помощи которых могут быть осуществлены полезные фотохимические синтезы. [c.294]

    Существуют и другие способы изменения внешних параметров на величину, достаточную для инициирования химической релаксации. Один из таких способов предложен Люнггреном и Лэммом [28]. Эти авторы разработали метод "быстрого разбавления исследуемого раствора при контроле величины его электропроводности". Схема смесителя приведена на рис. 13. [c.395]

    В зависимости от способа инициирования цепной реакции методы аддитивного хлорирования бензола делятся на три группы фотохимическое хлорирование при УФ-освещении, радиационное хлорирование при -излучении и хлорирование в присутствии перекисей и других генераторов свободных радикалов (например, азобисизобутиронитрила). Состав продукта хлорирования (технического гексахлорциклогексана) 53—70% а-изомера, 3—14% Р-изомера, И—18% изомера 6— 10% б-изомера, 3—5% остальных изомеров, 3—4% гептахлорциклогексана и 0,5— 1,0% октахлорциклогексана. [c.431]

    Другой способ основан на использовании индикатора — мономера, который способен полимеризоваться только по одному какому-нибудь механизму. С расширением арсенала методов полимеризации число таких мономеров-индикаторов непрерывно уменьшается, Все же считается, что изобутилен и циклические формали способны полимеризоваться только по катионному механизму, акрилаты — только по анионному и радикальному механизму, альдегиды (при атмосферном давлении) — только по ионному механизму. К числу мономеров, по-разному ведущих себя в зависимости от природы инициирующей системы, относятся диметилкетен и 2-ви-нилоксиэтилметакрилат. Оба под действием катионных инициаторов полимеризуются по двойной углерод-углеродной связи. При анионном инициировании кетен образует чередующийся сополимер из мономерных звеньев, содержаших связи С—С и С—О, Второй мономер при анионном инициировании полимеризуется по акрилатной группе, а при действии свободных радикалов — по обеим реакционным группам, образуя сшитый продукт. [c.200]

    Для более детального исследования механизма трехмерной полимеризации применяется метод ЭПР, позволяющий получать информацию о числе и природе образующихся свободных радикалов при различных способах инициирования полимеризации и их поведении в ходе процесса [146]. В сочетании с другими кинетическими методами его можно использовать для определения констант скоростей элементарных стадий процесса трех.мерной полимеризации скорости расходывания инициатора и ускорителя непосредственно в реагирующей среде, а также скорости накопления радикалов в частично отвержденных продуктах, Совокупность этих данных, полученных для различных условий отверждения олигомеров, отличающихся числом функциональных групп и длиной цепи между ними, позволяет судить о структуре сетчатого полимера и специфике протекания химических реакций в твердых структу-рирова1шых средах. [c.124]

    Успешное освоение полупромышленного радиационно-химического метода при получении хлоралканов на основе реакции теломеризации выявило преимущества радиационного инициирования по сравнению с другими способами. Высокая стоимость радиоактивных изотопов отдельных элементов приводит к удорожанию метода, поэтому инициирование подобных процессов смешанным реакторным излучением и излучением отработанных тепловыделяющих элементов (ТВЭЛ) представляет большой интерес. [c.7]

    К другим, наиболее важным способам инициирования относится метод фотохимического инициттроваиия. Этот метод был успешно применен К. И. Ивановым и его сот]1удниками [2] для изучения механизма низкотемнературного окислетгия жидких углеводородов. Указанные исследователи, применив ультрафиолетовый свет, получили и выделили ряд перекисных соединений, определение строения которых позволило <-делать важные выводы о механизме окисления уг.леводородов. [c.219]

    Прививка стирола осуществлялась методом постэффекта из газовой фазы [3]. Концентрация свободных радикалов в волокнах к моменту помещения их в пары стирола была для капроновых волокон равна 2-10 радикал1г, следовательно, расстояние между привитыми цепями составляло не менее 100—1000 А. Образцы волокон выдерживали при постоянной упругости пара стирола различное время (от нескольких минут до нескольких суток), так как количество привитого полистирола пропорционально длительности процесса прививки. Скорость прививки в поверхностном слое уменьшается с течением времени, потому что фронт прививки перемещается в глубь волокна [6], и, следовательно, увеличивается вклад в суммарный привес полистирола, привитого вдали от поверхности и не влияющего на ее свойства. Распределение по сечению волокна привитого полистирола зависит от кинетики процесса, способа инициирования и других факторов. В данных же системах наблюдаемые эффекты прививки были условно отнесены к суммарному количеству привитого полимера АР, выраженному в процентах от веса волокна. [c.90]

    Успехи в области инициирования полимеризации изобутилена, в частности использование комплексных катализаторов, излучений высокой энергии, комбинированных методов воздействия на мономерные системы, расширяют возможности синтеза сополимерных продуктов. В последнее время появились сведения о свободнорадикальном и других некатионных способах синтеза сополимеров изобутилена различной структуры, позволяющих увеличить число сополимеризующихся с ним мономеров. В отличие от традиционного инициирования катионными катализаторами они приводят к получению сополимеров изобутилена строго чередующейся структуры или с повышенной склонностью к чередованию различных мономерных звеньев (значения констант сополимеризации меньше 1). [c.203]

    НИИ сетей с коммутацией каналов-стандарт Х21. Второй уровень (канальный) описывает прохождение пакетов данных по каналам па основе стандарта HDL . Третий уровень (управление сетью) описывает прохождение целых сообщений между узлами управление сетью направляет движение в нужную физическую цепь и может также поддерживать частные сети и сети стандарта Х25. В основе этих уровней модели лежат по сути дела рекомендации Х25 для систем с коммутацией пакетов. Следует определить и другие уровни модели. Четвертый (транспортный) уровень относится к передаче сообщений между конечными пользователями — отправителем и получателем данных. Пятый уровень (управления сеансом) устанавливает и поддерживает взаимодействие между двумя взаимодействующими процессами, которые могут использовать один и тот же или разные главные компьютеры. Протокол соединения применяется для инициирования и завершения сеанса, а протокол диалога управляет потоком данных между процессами оба протокола легко реализуются. Шестой уровень модели (представительный) требуется для осуществления любого нужного переформатирования или преобразования данных, что позволяет иметь доступ к различным терминалам и устройствам. Седьмой уровень (прикладной) относится ко всем другим аспектам — прикладному программному обеспечению, системным программам для всевозможной обработки транзакций, управлению файлами, концентрации терминалов и т. д. Способ, которым уровни вышеописанной модели могут быть реализованы, видоизменяется в зависимости от производителя. Все уровни могут быть реализованы в одной главной системе или они могут быть разделены между двумя компьютерами, как это показано на примере узла, показанного в верхней части рис. 12.7. В этом случае используются большой универсальный компьютер (главная система) и интерфейсный сетевой процессор. Схематически изображенный на рис. 12.7 метод показывает очевидное отличие уровней применения (главная система) и функций сети (сетевой процессор). В работе [21] описано применение стандартов взаимосвязи открытых систем для построения системы открытой сети. Несомненно, этот метод организации сетей ЭВМ будет иметь большое значение для конструирования гибких многоцелевых сетей обработки информации. [c.481]

    Инициирование свободными радикала ми лучше всего изучено с кине тической точки зрения и является наиболее важным способом возбуждения полимеризации, однако имеются и другие методы активирования алифатической двойной связи. Эти методы обычно называются ионным активированием [6] и заключаются в смещении я-электронной нары двойной связи, а не в разделении ее на два отдельных электрона, как в случае [c.21]

    Метод эмульсионной полимеризации является наиболее широко используемым методом полимеризации ХТФЭ и многих других фторолефинов [41]. Вначале в этом методе использовали растворимые в воде инициаторы — персульфаты щелочных металлов в комбинации с бисульфитами. В последующих работах [42] к этим смесям добавляли соли серебра в качестве ускорителей. Таким образом удавалось повысить скорость полимеризации без понижения вязкости расплава образцов, полученных с данным инициатором. Использование других добавок приводило к различным результатам. Опыты, проведенные с большим числом эмульгаторов (органические кислоты) с использонанием персульфатных инициирующих систем, привели к получению полимеров, мало различающихся по свойствам [43]. Добавление дихлорбензола либо метилакрилата позволило получить устойчивый латекс с размером частиц 1800 А вместо получаемых обычно коагулирующих систем [44]. При добавлении 05 5 перфторкарбоновых кислот, широко используемых в качестве эмульгаторов, получены образцы полимеров, обладающих большей твердостью по Шору и высоким пределом прочности на растяжение [45]. Определяющими факторами при использовании персульфатных систем являются также температура и pH среды [46]. Когда эти параметры оптимальны, степень превращения достигает 80—100%. К 1964 г. инициирование с помощью персульфатных систем было достаточно хорошо изучено и использовано Болстадом [47] во многих работах по полимеризации и сополимеризации. Ниже приводится типичная методика полимеризации этим способом. [c.14]

    Оуэна с сотрудниками в большинстве случаев проводили испытания при растяжении на широких пластинах с надрезами. При сравнении результатов, полученных различными исследователями, возникают определенные трудности, обусловленные тем, что различные методы дают различные результаты и не известно, какой из них даст, так сказать абсолютные результаты . Например, в двух работах [109, 116] было установлено, что для материалов, содержащих 40% (об.) высокомодульных углеродных волокон, Кс примерно равен 40 МН/м г при растяжении пластин с надрезом, независимо от длины надреза. С другой стороны, при испытании аналогичных материалов при четырехточечном изгибе образцов с надрезом найденные значения Кс составляли величину около 16 МН/м 2 при отношении глубины надреза к толщине образца от 0,3 до 0,7 и значительно более низкие значения Кс при меньших отношениях глубины надреза к толщине. Эллис и Харрис [116] сравнивали параметры вязкости разрушения, определенные различными способами, для материалов на основе эпоксидной смолы и высокомодульных и высокопрочных углеродных волокон. Они определяли общую работу разрушения YF, работу инициирования трещины уг (площадь под кривой нагрузка — деформация до максимальной нагрузки, при которой начинается быстрый рост трещины), а также критическую скорость высвобождения упругой энергии Ос по методу определения податливости образца с трещиной. Все измерения проводились при низкоскоростном изгибе образцов с надрезом. По данным Кс, полученным при растяжении и изгибе, используя уравнение (2.27), они рассчитали эквивалентные значения Ос. Для того, чтобы сделать это, необходимо было использовать податливость С, учитывающую ортотропный характер волокнистых композиционных материалов. Зих, Пэрис и Ирвин вывели полную форму уравнения (2.27) [4], в котором С является функцией всех констант в тензоре податливости. Для ортотропных материалов с одной резко выраженной осью анизотропии, таких как однонаправленные композиционные материалы с непрерывными волокнами типа углеродных, их уравнение может быть записано в упрощенной форме  [c.134]

    Были предложены различные варианты осуществления процесса полимеризации, после которых продукт подвергался контролируемой деструкции по закону случая с одновременным ингибированием деполимеризации. Были предложены способы окислительной деструкции в жидкой среде, а также ацидолиза с целью ползгчения более узкого распределения. Другое направление использования кинетических данных о деструкции полимеров — это орределение начального МВР продукта. Практически во всех рассмотренных механизмах деструкции (кроме деструкции по закону концевых групп без ингибитора, лимитируемой реакцией инициирования) кинетика деполимеризации и кинетика изменения молекулярных весов зависят от начального МВР. Это открывает принципиальную возможность вычисления функции МВР по данным деструкции полимера, причем то обстоятельство, что такое вычисление возможно практически при любых механизмах деструкции, позволяет надеяться на применимость такого метода для широкого круга полимерных систем. [c.255]

    Кроме рассмотренных выше прямых и непрямых методов обнаружения и идентификации промежуточных частиц, в литературе описаны другие методы, которые также используются, хотя, может быть, и реже, для решения тех же задач. Некоторые из них применительно к реакциям органических соединений на электродах рассмотрены в обзоре [142]. Из них следует упомянуть хроно-потенциометрию, деполяризационные задачи которой для различных типов электродных процессов решены и описаны в работах ряда исследователей [142]. Реже применяют вращающийся дисковый электрод как поляризуемый электрод в различных вариантах вольтамперометрии, хотя его теория и области практического применения хорошо разработаны [113]. Однако дисковый электрод находит применение и в настоящее время в сочетании с другими методами регистрации вольтамперограмм или различными способами воздействия на его поверхность для инициирования процессов, приводящих к появлению неустойчивых частиц с высокой реакционной способностью. Ранее отмечалось использование комбинации коммутаторной полярографии с вращающимся дисковым электродом [112]. [c.84]


Смотреть страницы где упоминается термин Метод 5. Другие способы инициирования: [c.97]    [c.215]    [c.259]    [c.181]    [c.57]    [c.374]   
Смотреть главы в:

Полициклизация -> Метод 5. Другие способы инициирования




ПОИСК





Смотрите так же термины и статьи:

Другие методы

Инициирование



© 2024 chem21.info Реклама на сайте