Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Муравьиная кислота углерода

    Теплота сгорания СНзОН(ж.) с образованием газообразного диоксида углерода и жидкой воды при 298 К равна 715 кДж моль а теплота сгорания муравьиной кислоты, НСООН (ж.), составляет 261 кДж моль Вычислите при 298 К теплоту реакции [c.112]

    Химические свойства двухосновных кислот связаны, конечно, в первую очередь с присутствием карбоксильных групп. Все те реакции, в которых принимают участие остатки жирных кислот, происходят и в ряду двухосновных кислот, но эти превращения протекают по большей части дважды. Однако в этом ряду имеются новые реакции, которые обусловлены взаимным влиянием обеих карбоксильных групп или становятся возможными благодаря особому положению этих групп. Особенный интерес представляет поведение двухосновных кислот при нагревании. Щавелевая кислота легко разлагается при этом до муравьиной кислоты и двуокиси углерода  [c.336]


    Взгляните еще раз на формулу карбоксильной группы. Вы увидите, что у атома углерода еще остается одна свободная валентная связь, к которой может присоединиться какой-нибудь другой атом. Если это будет атом водорода, то получится муравьиная кислота. [c.154]

    Первую стадию проводили раньше с твердой щелочью в аппаратах со скребковыми мешалками. В дальнейшем было найдено, что при 160—200 °С и 1,2—1,5 МПа оксид углерода хорошо реагирует с 25—30%-ной щелочью в более простых аппаратах барботажного типа. Полученный раствор формиата натрия упаривают и выделя-KIT сухую соль. Вторая стадия — превращение солн в муравьиную кислоту — осложняется возможностью разложения последней под действием концентрированной серной кислоты  [c.546]

    Наиболее выгодный путь получения эфиров муравьиной кислоты (формиаты) состоит не в этерификации кислоты спиртами, а в синтезе из оксида углерода и спиртов при катализе основаниями  [c.546]

    Ни уксусная, ни пропионовая, ни масляная кислоты не были обнаружены. Отсутствие уксусной кислоты показало, что хлор вступил в реакцию по метильной группе в количестве, эквивалентном найденной муравьиной кислоте. Однако присутствие кислот с более чем шестью атомами углерода говорило за то, что замещение произошло также и при шестом атоме углерода. Уже по чисто статистическим соображениям невероятно, чтобы при наличии 28 метиленовых групп в метильную труппу вступило бы 28% хлора и чтобы замещение в положениях [c.540]

    Предельные одноосновные кислоты имеют состав, соответствующий общей формуле СпНа Ог. Простейшей карбоновой кислотой является муравьиная кислота НСО2Н. Названия и важнейшие свойства предельных одноосновных кислот приведены в табл. П1.9 Приложения. Кислоты, содержащие до трех атомов углерода,— подвижные жидкости, смешивающиеся с водой в любых соотношениях кислоты, содержащие от четырех до девяти атомов углерода, — малорастворимые в воде маслянистые жидкости, а свыше [c.151]

    При использовании метода окисления приходится работать при составе смеси за нижним пределом воспламенения 6% (об.) СНзОН, т. е. с весьма разбавленной паровоздушной смесью. При дегидрировании первичных спиртов, инициируемых кислородом, все побочные реакции с образованием окислов углерода, метана, муравьиной кислоты и воды, протекают не столь заметно. Это позволяет вести процесс при температуре 500—600 °С и большой скорости реакции с конверсией 85%. [c.324]

    Побочными продуктами при окислении ацетальдегида являются метилацетат, этилидендиацетат, муравьиная кислота и диоксид углерода  [c.406]


    Образование газа. Газы, образующиеся при крекинге, состоят из осколков больших молекул. Большое увеличение выхода газа с возрастанием температуры, возможно, является результатом крекинга первоначальных продуктов реакции. На состав газа влияют прежде всего условия его образования и, в меньшей степени, — характер исходного сырья. Газы состоят главным образом из углеводородов, хотя в них могут присутствовать и окись и двуокись углерода, сероводород, кислород и водород. Были обнаружены даже уксусная и муравьиная кислоты [171]. [c.316]

    Сабатье и Сандеран первые показали, что две валентности окиси углерода, оставаясь свободными, дают возможность присоединять к ее молекуле кислород, серу, молекулу хлора или водорода, причем в последнем случае образуется формальдегид, легко переходящий в муравьиную кислоту. [c.454]

    Процессы амидирования имеют важное значение в промышленности основного органического и нефтехимического синтеза для производства ряда ценных соединений. Из эфиров муравьиной кислоты, синтезируемых из оксида углерода и спиртов в присутствии основных катализаторов, получают диметилформамид  [c.222]

    Скорость образования эфира очень сильно зависит от строения карбоновой кислоты и спирта. Первичные спирты реагируют быстрее вторичных, а последние — быстрее третичных аналогично зависит скорость этерификации и от того, находится ли в карбоновой кислоте карбоксильная группа у первичного, вторичного или третичного атома углерода (Меншуткин). Наиболее легко взаимодействуют первые члены рядов — метиловый спирт и муравьиная кислота. [c.262]

    Муравьиная кислота..... 0,61 Четыреххлористый углерод. . . 1,05 [c.720]

    Бромистый водород Диоксид азота Диоксид серы Диоксид углерода Муравьиная кислота Озон [c.31]

    Этиловый спирт Четыреххлористый углерод Бензол Сероуглерод Муравьиная кислота Анилин Вода Лед Ртуть [c.24]

    Муравьиную кислоту производят подкислением формиатов натрия или калия (полученных из едких щелочей и окиси углерода) или с помощью непосредственного взаимодействия воды и окиси углерода, проводимого при высоких давлении и температуре в присутствии кислотных катализаторов  [c.333]

    Если в присутствии кислотных катализаторов окись углерода реагирует со спиртами при высоких температуре и давлении с образованием карбоновых кислот, в присутствии нейтральных или окисных катализаторов в тех же условиях получаются эфиры муравьиной кислоты [31]  [c.347]

    Окисление метилового спирта можно проводить в несколько стадий, причем сначала получается формальдегид, затем муравьиная кислота и, наконец, двуокись углерода  [c.117]

    По способу для разделения примесей пробу раствора дифенилолпропана в этаноле наносили на лист ватмана № 1, пропитанный водой в качестве растворителя использовали четыреххлористый углерод, насыщенный муравьиной кислотой. Хроматографирование вели нисходящим способом для проявления хроматограммы использовали свежеприготовленную смесь водных растворов феррицианида калия и хлорного железа. Количественное определение проводили с помощью хроматометра Ланге (хроматограмму парафинировали, а затем измеряли интенсивность окраски пятен и сравнивали с калибровочным графиком). Применяли также и более простой метод, не требующий указанного прибора — метод сравнения интенсивности окраски в исследуемой и эталонной пробах. Помимо орто-пара-изомера дифенилолпропана, соединения Дианина и трис-фенола I удалось обнаружить 10 неидентифицированных примесей. На основании величины авторы предполагают, что три компонента из десяти являются фенолами с одной группой —ОН. [c.187]

    Работы по окислению парафинов в Германии были направлен1з1 главным образом на создание методов окисления высших представителей насыщенных углеводородов, содержащих 20—25 атомов углерода. Если окисление этой группы предельных углеводородов проводить должным образом, получают жирные кислоты различного молекулярного веса, начиная практически с муравьиной кислоты и кончая кислотами с тем же числом атомов углерода, что и у исходного парафина. [c.432]

    Задача 4.9. Для получения форма.аь.чсгпда метиловый спирт необходимо окислить на серебряном катализаторе ( НзОН + 0,5О2 = НСНО+Н2О. Кроме этой основной реакции протекают и побочные, в результате которых об-ра уются муравьиная кислота, оксид углерода (IV), м -тап и другие продукты. [c.53]

    При термоокислении ПДМС образуются формальдегид и параформ, окись и двуокись углерода, вода, метанол, муравьиная кислота и обычные продукты термодеструкции — циклосилоксаны, метан, водород. В окисленном полимере появляются боковые си-ланольные группы, в состав которых входит часть атомов водорода отщепившихся метильных групп, но в нем отсутствуют перекисные, карбонильные, карбоксильные и кремнийгидридные группы [66]. Накопление боковых силанольных групп приводит к ускорению как структурирования полимера в результате их конденсации, так и термодеструкции с выделением циклосилоксанов и метана по реакциям (34) и (35) [66, 67]. Потери массы очи щенного ПДМС за одинаковое время при 300 °С на воздухе в 2—3 раза выше, чем в вакууме. Термоокисление ингибируется различными антиоксидантами [66—68. Все имеющиеся данные [c.487]


    Эта реакция показывает, что оксид углерода(II) можно ра сматривать как ангидрид муравьиной кислоты, Хотя муравьин кислота пе может бг гть получена непосрелстпеггио из оксида угл рода(Н) и воды, солн ее об )азуются при взаимодействии едк( ш,елочей с оксидом углерода ири 150—200 С  [c.444]

    Взаимодействие оксида углерода со спиртами при катализе соответствующим алкоголятом происходит путем его атаки молекулой СО с промежуточным образованием карбапиона, который отрывает протон от молекулы спирта, регенерируя катализатор и образуя эфир муравьиной кислоты (формиат)  [c.545]

    Нанисать уравнения реакций восстановления K2[Pd l4 до металла а) муравьиной кислотой б) оксидом углерода  [c.216]

    В этом случае требуется только каталитическое количество щелочи, в спязи с чем и некоторые другие производные муравьиной кислоты более экономично получать из ее эфиров. Метил- и этилфор-миат синтезируют при 90—110°С и жЗ МПа путем барботирсва-ния оксида углерода через спирт, содержащий 1—2% алкоголята или щелочи. [c.546]

    Пропан и бутан. Указанные углеводороды за рубежом широко применяются в промышленности как сырье для процессов неполного окисления. В результате некаталитического парофазного окисления пропана при умеренных давлениях и температуре 250— 350° получается сложная смесь различных продуктов окисления ацетальдегид, формальдегид, метанол, пропиональдегйд, пропа-нолы, ацетон, окиси пропилена и этилена, этиловый спирт, уксусная И муравьиная кислоты, окись п двуокись углерода и др. [c.84]

    В особую группу следует выделить синтезы на основе оксида углерода, водорода и азота метанола (3 процесса), муравьиной кислоты (2 процесса), метиламинов (2 процесса), метилформиата, аммиака (4 процесса), нитрата аммония (2 процесса), азотной кислоты (2 процесса), карбамида и одноклеточных белков. В каталог современных нефтехимических процессов последняя группа синтезов входит вследствие привязки к нефтяному углеводородному сырью через процессы конверсии метана и жидких нефтяных дистиллятов в оксид углерода н водород. Главным ядром данной группы процессов являются метанол и аммиак, которые потребляются в значительных количествах для производства эфиров различных алифатических и ароматических кислот, а также, аминонроизводных, поэтому входят в состав нефтехимической продукции и нефтехимического сырья. [c.358]

    Вьход ароматических кислот обычно составляет л 90%), иногда дости1ая 95—97%- Побочными продуктами более глубокого окисления метильных групп алкилароматических соединений являются муравьиная кислота и диоксид углерода. Кроме того, образуются побочные продукты неполного окисления. К таковым при окислении /г-ксилола относится п-карбоксибензальдегид, который вызывает окраску полимера. [c.399]

    Водород может содержать также кислотные прнмеси, например диоксид углерода, муравьиную кислоту, OS, SO2 и H2S, которые нередко вредны для реакции. Заметим попутно, что гидопруемое вещество, например кокосовое масло, может прогоркнуть, и в нем образуются органические кислоты. Еще более сильные яды (минеральные кислоты) остаются в гидрируемом веществе после кислотной промывки, иногда используемой в ходе его обработки. Даже не обнаруживаемые химическим анализом количества кислоты в веществе, идущем на гидрирование, могут подавить реакцию, п причину неудачи трудно установить. [c.106]

    Эта теория, развитая Боном и его сотрудниками [27], полагает, что окисление идет через реакции последовательного гидроксилирования. По этой теории, например, окисление метана последовательно идет через метиловый спирт, метилен-гликоль, разлагающийся на формальдегид и воду. Формальдегид может окисляться в муравьиную кислоту или разлагаться на окись углерода и водород. Окисленио этилена идот по нижо- ледующей схеме  [c.347]

    Из простейших непредельных спиртов легче всего доступен аллилов ы й СП и р т. Он образуется, например, в значительном количестве при нагревании глицерина с щавелевой или муравьиной кислотой. При этом в качестве промежуточного продукта образуется полный эфир глицерина и щавелевой кислоты, который при дальнейшем нагревании разлагается на аллиловын спирт и двуокись углерода (Чаттауэй)  [c.142]

    Хлороформ. Для получения этого соединения применяются спирт или ацетон, а в последнее время также четыреххлористый углерод. При обработке. хлором и щелочью или хлорной известью этиловый спирт вначале окисляется до ацетальдегида последний, реагируя с хлором, превращается в трихлоруксусный альдегид — хлораль I3 HO. Хло-раль же в щелочном растворе нестоек и распадается на муравьиную кислоту и хлороформ  [c.229]

    При нагревании лимонная кислота, как уже отмечалось выше (стр. 348), превращается в цнтраконовую и итаконовую кислоты. Большое значение имеет реакция разложения лимонной кислоты при действии концентрированной Н2504 подобно другим а-окси- и а-кетокис-лотам, лимонная кислота отщепляет окись углерода и воду (или, соответственно, муравьиную кислоту) и превращается в ацетонди-карбонов у ю кислот у  [c.412]

    Другие ароматические альдегиды. Хороший метод синтеза гомологов бензальдегида был разработан Гаттерманом ои основан на действии окиси углерода и сухого хлористого водорода на ароматические углеводороды в присутствии хлористого алюминия и хлористой меди. При этом СО и НС1 реагируют как (неизвестный) хлораигидрид муравьиной кислоты НС0С1, а весь процесс представляет собой, собственно говоря, особый случай синтеза ароматических г- етонов по Фриделю — Крафтсу (ср, стр. 631). В результате этой реакции альдегидная группа обычно вступает в пара-положение к заместителю в бензольном ядре  [c.627]


Смотреть страницы где упоминается термин Муравьиная кислота углерода: [c.373]    [c.444]    [c.60]    [c.83]    [c.45]    [c.295]    [c.475]    [c.503]    [c.163]    [c.314]    [c.261]    [c.100]    [c.17]    [c.248]    [c.334]   
Синтезы на основе окиси углерода (1971) -- [ c.128 , c.134 , c.137 , c.139 , c.143 , c.147 ]




ПОИСК





Смотрите так же термины и статьи:

Муравьиная кислота



© 2025 chem21.info Реклама на сайте